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Abstract

We study the asymptotic behavior of the polynomialsp andq of degreesn, rational interpolants to
the exponential function, defined byp(z)e−z/2 +q(z)ez/2 =O (�2n+1(z)), as ztends to the roots of
�2n+1, a complex polynomial of degree 2n+ 1. The roots of�2n+1 may grow to infinity withn, but
their modulus should remain uniformly bounded byc log(n), c <1/2, asn → ∞. We follow an ap-
proach similar to the one in a recent work withArno Kuijlaars andWalterVanAssche on Hermite–Padé
approximants toez. The polynomialsp andq are characterized by a Riemann–Hilbert problem for a
2×2 matrix valued function. The Deift–Zhou steepest descent method for Riemann–Hilbert problems
is used to obtain strong uniform asymptotics for the scaled polynomialsp(2nz) andq(2nz) in every
domain in the complex plane. From these asymptotics, we deduce uniform convergence of general
rational interpolants to the exponential function and a precise estimate on the error function. This
extends previous results on rational interpolants to the exponential function known so far for real
interpolation points and some cases of complex conjugate interpolation points.
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1. Introduction

LetB := B(n1+n2) = {z(n1+n2)
i }n1+n2

i=0 , be a triangular sequence of complex interpolation
points. We define the rational interpolants of type(n1, n2) to ez such that

pn1,n2(z) + qn1,n2(z)e
z = O (�n1+n2+1(z)), z → z

(n1+n2)
i ,

i = 0, . . . , n1 + n2, (1.1)

where

�n1+n2+1(z) =
n1+n2∏
i=0

(
z − z

(n1+n2)
i

)
and degpn1 �n1, degqn2 �n2. The polynomialspn1,n2 andqn1,n2 exist. Indeed, relation
(1.1) is equivalent to a system ofn1+n2+1 linear homogeneous equations for then1+n2+2
unknown coefficients in the two polynomialspn1,n2 andqn1,n2. Hence a non trivial solution
with qn1,n2 �= 0 always exists. We put

en1,n2(z) = pn1,n2(z)e
−z/2 + qn1,n2(z)e

z/2,

so that
en1,n2(z) = O (�n1+n2+1(z)).

Note that when all the interpolation pointsz(n1+n2)
i are chosen to be equal to zero, we recover

the usual Padé approximant of type(n1, n2) to ez.
In this paper, we will stick to the diagonal case, i.e.n1 = n2 = n, and we will simply

write pn andqn for pn,n andqn,n, respectively. It is not difficult to check that the rational
functionpn/qn associated to a pair(pn, qn) solving an equation of the type (1.1), whereez

can be replaced by any functionf defined in a subset ofC where interpolation takes place,
is always unique. On the contrary, the pairs(pn, qn) are in general not unique, even when
normalized by some multiplicative constant.

We will be interested in the asymptotic behavior of the rational interpolantspn and
qn. Throughout, we will assume that the (complex) interpolation points inB(2n) have a
maximum modulus which grows at most likec logn, wherec < 1/2 is some given positive
constant. It will be a consequence of our analysis that forn large, the solution of type(n, n)
to (1.1) satisfies

degpn = n, degqn = n.

In particular, forn large, a solution normalized so thatqn is monic will be unique.
The main task of the paper will be the study of the asymptotics of the scaled diagonal

polynomials
Pn(z) = pn(2nz), Qn(z) = qn(2nz) (1.2)

and of the remainder term

En(z) = Pn(z)e
−nz + Qn(z)e

nz = O (�n(z)), (1.3)

where
�n(z) = (2n)−2n−1�2n+1(2nz).
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Fig. 1. Zeros of the diagonal Padé polynomialsp0
60 (the boxes on the left) andq0

60 (the circles on the right).

We will always choose the normalization in (1.3) so thatQn is a monic polynomial. From
these asymptotics, the limit distributions of the zeros ofPn, Qn, andEn will follow. The
zeros ofPn andQn accumulate on two specific arcs in the complex plane, symmetric with
respect to the imaginary axis, while the zeros ofEn accumulate on two segments, on the
imaginary axis itself. To illustrate, the zeros of the usual Padé approximantsp0

n, q0
n have

been plotted for the valuen = 60 in Fig.1. The picture shows their particular distributions,
first observed and studied by Saff and Varga in[37].

We will prove that the zeros of the scaled rational interpolantsPn andQn and the zeros of
the scaled Padé approximantsP 0

n andQ0
n share the same asymptotic distribution. In other

words, the geometry which underlies the limiting behavior of the zeros remains unchanged
when considering general rational interpolants instead of plain Padé approximants.

The Padé approximants (and more generally simultaneous Padé approximants) to the
exponential function were first studied by Hermite[19] in connection with his proof of
the transcendance ofe. Then, Padé, a student of Hermite, proved their convergence to
ez, uniformly in the complex plane, by making use of the explicit formulas, originally
determined by Hermite,

p0
n1,n2

(z)=
n1∑
j=0

(n1 + n2 − j)!n1!zj
(n1 + n2)!j !(n1 − j)! , q0

n1,n2
(z)=

n2∑
j=0

(n1 + n2 − j)!n2!(−z)j

(n1 + n2)!j !(n2 − j)! ,

see[30–32]and[33, Section 75]. He obtained in this way a very nice, but rare, property
of these approximants, since uniform convergence of the Padé approximants is known to
happen only for a very few classes of functions in the complex plane.

Rational interpolation or equivalently, multipoint Padé approximation is an old sub-
ject whose study goes back at least to Cauchy and Jacobi, see[9,20]. Usually, the theory
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is divided into two parts, on one hand, an algebraic part concerned with recurrence re-
lations, determinantal identities and algorithms for computations, and on another hand,
an analytic part concerned with convergence aspects. The theorem of uniform conver-
gence derived in this paper for the exponential function relates to the second part. It is
of the same nature as the generalization that was obtained in[18] for multipoint Padé
approximants to Markov functions. Note that contrary to the hypothesis made in[18],
no symmetry assumption is made on the set of interpolation points. In connection with
the problem of the limiting distribution of zeros, the present results may also be seen
as closely related to the study initiated by Szeg˝o in [42] concerning the distribution of
the zeros of Taylor sections of the series forez, subsequently generalized by Saff and
Varga in [36–38] to the zeros of the Padé approximants toez (see also[16,44]), and
more recently by Stahl in[39,40]to the zeros of the quadratic Hermite–Padé approximants
to ez.

It may come as a surprise that Padé’s result for the exponential function was not general-
ized to more general scheme of interpolation points in the complex plane until recently. It
was only in[6] that this property was obtained for uniformly bounded sets of interpolation
points on the real axis. There, the main ingredients were Rolle’s theorem and results from
the geometry of polynomials. Subsequently, the same property was also proved for some
cases of conjugate interpolation points in a given compact set ofC, essentially by using
an analog of Rolle’s theorem for real exponential polynomials in the complex plane, see
[45]. Nevertheless, to handle the case of complex interpolation points in full generality, it
seemed necessary to introduce some new idea.

We follow an approach similar to the one used in[27] for studying quadratic Hermite–Padé
approximants toez. The asymptotic analysis is based on a Riemann–Hilbert formulation for
the polynomialsPn andQn, combined with a steepest descent analysis for Riemann–Hilbert
problems. This technique originated with Deift and Zhou[15] and is currently applied to
problems in such many different areas as integrable systems[14], random matrix theory
[11,12], combinatorics[3] and orthogonal polynomials[7,12,13,21]. The book[10] and the
lecture notes[22] are excellent introductions to the technique. Refs.[8,5,24,25]give further
orientation about recent developments.

Note that[1,2] contain a thorough study of strong asymptotics of orthogonal polynomials
with varying complex weights. Such orthogonal polynomials naturally arise in the context
of rational approximation problems. In this connection, Theorem 2 of[1] is especially rel-
evant here, which shows that strong asymptotics can be derived as soon as the geometry
of the problem (more precisely the support of an equilibrium measure with respect to an
extremal problem in potential theory with external field) is known and satisfies a sym-
metry and a connectedness assumptions. Note also that our asymptotic results concerning
the scaled rational interpolants, when specialized to the Padé case, are not new since the
polynomialsp0

n andq0
n agree in this case, up to some multiplicative constant, with the La-

guerre polynomialsL(−2n−1)
n with negative parameter−2n − 1, see[23] where the scaled

polynomialsL(−2n−1)
n (nz) were studied through the formulation of a Riemann–Hilbert

problem.
Here, the Riemann–Hilbert problem is to find a 2×2 matrix valued functionY : C\� →

C
2×2 where� is a closed contour in the complex plane encircling the origin (hence all the
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pointsz(2n)i /2n for n large) once in the positive direction, such that
1. Y is analytic inC \ �.
2. Y satisfies the jump condition

Y+(z) = Y−(z)
(

1 �−1
n (z)e−2nz

0 1

)
, z ∈ �, (1.4)

whereY+(z) andY−(z) denote the limiting values ofY(z′) asz′ approachesz ∈ � from
the inside and outside of�, respectively.

3. For largez

Y (z) =
(
I + O

(
1

z

))(
zn+1 0

0 z−n−1

)
, z → ∞. (1.5)

We will show in Section 5.1 that the Riemann–Hilbert problem has a unique solution forn
large, and thatY22(z) = �−1

n (z)Qn(z) for z outside�, Y22(z) = �−1
n (z)e−nzEn(z) for z

inside�, andY21(z) = Pn(z).
The steepest descent analysis consists of a number of transformations. A crucial role is

played by the Riemann surface defined by

z = w

(w2 − 1/4)
, (1.6)

which is considered as a two sheeted surface with a cut along an arc�P . The jumps of the
two inverse mappings of (1.6) across the arc determine a probability measure�P supported
on�P . This measure turns out to be the limiting distribution of the normalized zero counting
measures of the polynomialsPn.

We choose the closed contour� in the Riemann–Hilbert problem forYso that it contains
the cut�P . The measure�P and itsg-transform

gP (z) =
∫

log(z− s) d�P (s)

are used to make the first transformation of the Riemann–Hilbert problem, which has the ef-
fect of normalizing the problem at infinity. Then we follow the general scheme, as presented
in [13] or [10], for the asymptotic analysis of Riemann–Hilbert problems. It leads to a final
Riemann–Hilbert problem whose solution has an explicit asymptotic behavior forn → ∞,
see Theorem6.4 in Section 6.3. Tracing our steps back to the original Riemann–Hilbert
problem, we obtain strong asymptotic formulas for the scaled multipoint Padé approximants
in every region of the complex plane. In particular, we obtain asymptotic formulas on the
sets where the zeros are and their endpoints. These last results, though not necessary in
deriving uniform convergence of the rational interpolants, are of independent interest.

In Section 2 we state the normality property of the rational interpolation problem toez,
uniform convergence of the polynomialspn andqn, and an estimate for the remainder term
en, which follow readily from the asymptotic results for the scaled polynomialsPn,Qn and
for the remainderEn. The asymptotic results make use of the functions obtained from the
Riemann surface. The Riemann surface and the measures and functions derived from it are
also described in Section 2. In Section 3 we prove the statements about the Riemann surface
and other geometrical objects involved in the problem. To prepare for the transformations
of the Riemann–Hilbert problem we need relations between the various functions involved,
such as the inverse mappings of (1.6) and the functiongP . These properties are established
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in Section 4. Sections 5 and 6 contain the transformations of the Riemann–Hilbert problem
and the asserted asymptotic results are proven in Section 7.

The general layout of the paper is similar to that of[27]. Actually, the method to derive
the strong asymptotics of the scaled rational interpolants follows closely the one used
in obtaining the strong asymptotics of the quadratic Hermite–Padé approximants to the
exponential function. The analysis here is slightly simpler since we only need 2×2 matrices
instead of the 3× 3 matrices that were necessary in[27]. At the same time, the analysis
demands at different places special care as we work with rational interpolants, instead of
plain Padé approximants. Some parts of the proofs have not been displayed, especially those
that can be adapted from the corresponding proofs in[27]. In this respect, it may be helpful
as reading the present paper to have Ref.[27] at hand. Besides, Ref.[26] gives a very brief
overview of[27].

2. Statement of results

Throughout, the following hypothesis on the schemeB of interpolation points will be
made.

There exists0 < ��1 andc > 0 such that,for each n,the points ofB(2n) lie in a closed
diskD n centered at the origin,of a radius�n satisfying the growth condition

∀n > 0, �n�
(

1 − �
2

)
log n + c. (2.1)

2.1. Normality of the rational interpolation problem

We first state a result which says that, given a sequence of closed disksD n whose radius
meets condition (2.1), an exponential polynomialpn(z) + qn(z)e

z cannot have more than
2n + 1 zeros inD n for n large. In the terminology of Padé approximation, when allD n

reduces to the origin, such a property is usually rephrased by saying that the problem under
study is normal. We will keep this terminology here.

Theorem 2.1. Let B := B(2n) = {z(2n)i }2n
i=0, be a given triangular sequence of complex

interpolation points satisfying(2.1).Then,there exists some integerN > 0 such that for
n�N , the rational interpolantspn andqn of type(n, n) to ez satisfying

pn(z) + qn(z)e
z = O (�2n+1(z)), where �2n+1(z) =

2n∏
i=0

(
z − z

(2n)
i

)
, (2.2)

have full degrees,namely
degpn = n, degqn = n.

In particular, a rational interpolant normalized so thatqn is monic is unique.

Theorem2.1 will be deduced from the strong asymptotics for the scaled rational inter-
polants to be given in Theorem2.10.

Remark. Normality does not hold for any degree. Indeed, it suffices to choose the closed
disk centered at the origin, of radius 2�, and{−2i�, 0, 2i�} as three interpolation points.
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Then,qn(z) = 1 andpn(z) = −1 solve the corresponding interpolation problem with
degpn < 1 and degqn < 1.

2.2. Local uniform convergence of the diagonal rational interpolants

Let us state now the result which is the main goal of our study, that is uniform convergence
in the complex plane of the rational interpolants to the exponential function.Actually, we will
prove more than that, namely, as in the Padé case, separated convergence of the numerator
and denominator of the interpolants, see (2.3). Moreover, we will also obtain a sharp estimate
for the error functionsez + rn(z), see (2.4).

Theorem 2.2. Let B be a scheme of points satisfying(2.1)and letpn andqn be the rational
interpolants of type(n, n) to ez such that(2.2)holds. Then,the following three assertions
hold true:

(i) All the zeros and poles ofrn = pn/qn tend to infinity,as n becomes large,sufficiently
fast so that no poles ofrn lie in the diskD n, for n large. Hence,dividing the first
equation in(2.2)byqn, we getrn as a true rational interpolant toez satisfying

ez + rn(z) = O (�2n+1(z)).

(ii) Asn → ∞,

rn(z) → −ez, pn(z) → −ez/2, qn(z) → e−z/2, (2.3)

locally uniformly inC, whereqn is normalized so thatqn(0) = 1.
(iii) for n large,

ez + rn(z) = (−1)n+1
( e

4n

)2n+1
�2n+1(z)e

z−1
(

1 + O
(

1

n�

))
, (2.4)

locally uniformly inC.

As Theorem2.1, Theorem2.2 follows easily from the strong asymptotics given in The-
orem2.10.

Remark.Theorem2.2generalizes for the diagonal case results about rational interpolation
of the exponential function that were obtained with real interpolation points and some cases
of complex interpolation points in Theorems 2.1 and 2.2 of[6] and Theorems 2.1 and 2.3
of [45], respectively.

2.3. The Riemann surface

In order to state our convergence results for the scaled rational interpolantsPn andQn,
we first introduce an appropriate Riemann surface. The starting point for our analysis will
be the explicit integral formulas for the scaled Padé approximantsP 0

n andQ0
n, which are

P 0
n (z) = Cenz

2�i

∮
C−1/2

e2nzw dw

(w2 − 1/4)n+1 , (2.5)
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Q0
n(z) = Ce−nz

2�i

∮
C1/2

e2nzw dw

(w2 − 1/4)n+1 . (2.6)

HereCj is a closed contour in the complex plane encirclingj in the positive direction,
which does not encircle the other point in{−1/2, 1/2}. The numberC in (2.5) and (2.6) is a
normalization constant. The Riemann surface is chosen so that it parameterizes the critical
points of the function

w �→ 2zw − log
(
w2 − 1/4

)
. (2.7)

Note that the integrals in formulas (2.5) and (2.6) have the form∮
Cj

1

(w2 − 1/4)
en

(
2zw−log

(
w2−1/4

))
dw (2.8)

and that by the classical saddle point analysis for the asymptotic evaluation of integrals, the
main contribution to the integral (2.8) comes from a critical point of (2.7). So we defineR
as the Riemann surface for the function

z = z(w) = 1

2

(
1

w − 1/2
+ 1

w + 1/2

)
= w

(w2 − 1/4)
. (2.9)

Note that we obtain (2.9) if we set the derivative of (2.7) equal to zero and solve forz.
The rational function (2.9) has two inverse mappings. These are the two solutions of the
quadratic equation

zw2 − w − z

4
= 0. (2.10)

The Riemann surfaceR consists of two sheetsR P , andR Q, see Proposition2.3. The
bijective mapping� : R → C is the inverse of (2.9). We denote its restriction to the two
sheets by�P , and�Q, respectively. So�P (z), and�Q(z) are the two solutions of (2.10),
given explicitly by

�P (z) = 1 − √
1 + z2

2z
, �Q(z) = 1 + √

1 + z2

2z
, (2.11)

where the square root is chosen to be positive for large positivez. Typically we will identify
the two sheets with copies of the complex plane, and so�P and�Q are defined onC with
an appropriate cut�P connecting the two branch points

z1 = i, z2 = −i,

of the Riemann surface. The sheetsR P andR Q are glued together along the cut�P .
The two branch pointsz1 = z(w1), z2 = z(w2) are related to the pointsw1,w2 for which

z’ (w) = 0, namely
w1 = −i/2, w2 = i/2. (2.12)

The precise sheet structure ofR is given in the following proposition.

Proposition 2.3. There is an analytic curve�P from z1 to z2 lying in the left half-plane,
such that the following hold.
(a) Two inverse mappings�P and�Q of (2.9) exist so that�P and�Q are defined and

analytic onC \ �P .
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Fig. 2.�-image of the Riemann surfaceR .

(b) At infinity,we have the values�P (∞) = −1/2,and�Q(∞) = 1/2.
(c) For z ∈ �P , we have

1

2�i

∫ z

z1

(�Q − �P )+(s) ds ∈ R, (2.13)

with integration along the+side of�P . [This is the side of�P that is on the left while
going fromz1 to z2 along�P .]

The functions�P , �Q are defined on theP, andQ sheet ofR , respectively. Together
they constitute a conformal map fromR onto the Riemann sphere. The images of the two
sheets are shown in Fig.2.

Other curves of interest to our problem are defined by the property that1
2�i

∫ z

z1
(�Q −

�P )(s) ds is real. These curves are described by the following proposition, see Fig.3.

Proposition 2.4. There are four analytic curves where12�i

∫ z

z1
(�Q−�P )(s) ds is real. One

of them is�P , a second one is the mirror image of�P with respect to the imaginary axis. We
call this curve�Q. The other two curves are semi–infinite segments lying on the imaginary
axis. They joinz1 andz2 with infinity,and we call them�E,1 and�E,2, respectively.

All contours are oriented as shown in Fig.3. The orientation induces a+side and a−side
on each contour, where the+side is on the left and the−side on the right while traversing
the contour according to its orientation. Propositions2.3and2.4are proved in Section 3.

We also define the contour
�E = �E,1 ∪ �E,2. (2.14)
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Fig. 3. Curves for which 1
2�i

∫ z
z1
(�Q − �P )(s) ds is real.

The contours�P , �Q, and�E divide the complex plane into three domains. We denote
the unbounded domains byD∞,P , D∞,Q, as shown in Fig.4. The bounded domain is
denoted byD0, see also Fig.4. Moreover, we put

D∞ = (
D∞,P ∪ D∞,Q ∪ (�E \ {z1, z2})

)
. (2.15)

This is the unbounded domain bounded by�P and�Q.

2.4. The measures�P , �Q, and�E

We now define measures on the curves�P , �Q, and�E . The complex line elementdsis
defined according to the orientation of these curves given in Fig.4.

Definition 2.5. We define a measure�P on�P and a measure�Q on�Q by

d�P (s) = 1

�i
(�Q − �P )+(s) ds, s ∈ �P ,

d�Q(s) = 1

�i
(�Q − �P )+(−s) ds, s ∈ �Q (2.16)

and a measure�E on�E by

d�E(s) = 1

�i
(�Q − �P )(s) ds, s ∈ �E,1 ∪ �E,2. (2.17)
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Fig. 4. Curves�P , �Q, �E , and domainsD0, D∞,P , D∞,Q.

Theorem 2.6.We have that�P is a probability measure on�P and�Q is a probability
measure on�Q. The measure�E is a positive measure on�E .

Theorem2.6 is proved in Section4.1.
The relevance of these measures is shown by the following theorem. For every polynomial

p of exact degreen, we denote by	p the normalized zero counting measure. Thus

	p = 1

n

∑
p(z)=0


z

where each zero is counted according to its multiplicity. We also define a zero counting
measure for the remainder functionEn, namely

	En = 1

n

∑
En(z)=0

�n(z)�=0


z,

where the normalization byn now corresponds to the degree of approximation and the
2n + 1 interpolatory zeros ofEn at the roots of�n have been excluded.

Theorem 2.7.We have

	Pn
∗→ �P , 	Qn

∗→ �Q, (2.18)
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where the convergence is in the sense ofweak∗ convergence of measures,i.e.,�n
∗→ � if∫

f d�n → ∫
f d� for every bounded continuous function f.Furthermore,we have

	En

∗→ �E, (2.19)

in the sense that

lim
n→∞

∫
f (s) d	En(s) =

∫
f (s) d�E(s)

for every continuous function f such thatf (s) = O (s−2) ass → ∞.

In contrast to the measures	Pn and	Qn which are probability measures, the measures
	En have infinite mass. They also have unbounded support. As a result, the proof of the limit
(2.19) is more involved than that of (2.18). A sketch of the proof of Theorem2.7 is given
in Section7.3. For details, the reader is referred to the proof of similar results derived in
Theorem 2.5 of[27].

2.5. The g-functiongP and the function�P

For the strong asymptotic results we need the log-transform (or complex logarithmic
potential) of the measure�P .

Definition 2.8. We introduce the function

gP (z) =
∫
�P

log(z− s) d�P (s), z ∈ C \ �P , (2.20)

which is defined modulo 2�i.

ThusgP is a multivalued function, depending on the specific choice of the branches
of the logarithmic functions. Our results will involve expressions likeengP , and then the
multivaluedness will play no role.

Another important function is the function�P given by

�P (z) =
∫ z

z1

(�Q − �P )(s) ds. (2.21)

The path of integration in (2.21) is in C\ (�P ∪ {0}). The function�P is multivalued but
the real part is well-defined. From Proposition2.4we know that Re�P = 0 on the curves
�P , �Q, �E,1, and�E,2. An important property of�P is given in the following lemma.

Lemma 2.9. The real part of�P is zero exactly on�P , �Q, �E,1, and�E,2. The real part
of �P is negative inD∞,P ∪D0, and it is positive in the remaining partD∞,Q of the plane.

Lemma2.9 is proved in Section4.2.

2.6. Strong asymptotics of the scaled rational interpolants

Recall that inequality (2.1) has been assumed throughout, and that the two polynomials
Pn andQn satisfy (1.3) whereQn is monic. In the rest of the paper, the following function
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will be used

sn(z) = z−2n−1�n(z) =
2n∏
i=0

(
1 − z

(2n)
i

2nz

)
. (2.22)

We havesn(∞) = 1, n�0, and from (2.1), we see that, for any compact setK of C \ {0}
and forn large enough,sn has no zeros inK.

We will also need the function
√

4w2 + 1 which branches at the two pointswk given in
(2.12). We choose as cut for this function the curve�P+(�P ) (see Fig.2), and assume that
it is positive for large positivew.

2.6.1. Strong asymptotics away from the zeros
The following theorem gives the strong asymptotics of the polynomialsPn, Qn and the

remainder termEn away from their zeros.

Theorem 2.10.With the functions defined above,we have

Pn(z) = (−1)n
√

2sn(1/�P (z))e
ngP (z)

sn(2)
√

4�2
P (z) + 1

(
1 + O

(
1

n�

))
(2.23)

uniformly for z in compact subsets ofC \ �P ,

Qn(z)

=


(−1)n+1

√
2sn(1/�P (z))e

n(gP (z)−2z)

sn(2)
√

4�2
P (z)+1

(
1 + O ( 1

n�

))
for z ∈ D0 ∪ �P \ {z1, z2}

√
2z2nsn(1/�Q(z))e

−ngP (z)

sn(2)
√

4�2
Q(z)+1

(
1 + O ( 1

n�

))
for z ∈ C \ D0,

(2.24)

uniformly for z in compact subsets ofC \ �Q. Furthermore we have

En(z)

=


(−1)n

√
2sn(1/�P (z))e

n(gP (z)−z)

sn(2)
√

4�2
P (z)+1

(
1 + O ( 1

n�

))
for z ∈ D∞,P ∪ �P \ {z1, z2}

√
2�n(z)e

n(z−gP (z))

zsn(2)sn(1/�P (z))

√
4�2

Q(z)+1

(
1 + O ( 1

n�

))
for z ∈ C \ D∞,P ,

(2.25)

uniformly for z in compact subsets ofC \ �E .

Remark. The asymptotic formula (2.24) for the polynomialQn may as well be stated
using functions which are the analytic continuations of�P and�Q to C \ �Q. Let �̃P and

�̃Q be the functions in (2.11) where the cut for the square root is now chosen to be�Q.

Hence,̃�P (z) = �P (z) and�̃Q(z) = �Q(z) for z ∈ C \ D0, while �̃P (z) = �Q(z) and

�̃Q(z) = �P (z) for z ∈ D0. Moreover, let

gQ(z)=
∫
�Q

log(z− s) d�Q(s), z ∈ C \ �Q,

=
∫
�Q

log(z− s)(�̃Q − �̃P )+(s) ds,
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where the measured�Q is defined in (2.16). Then, one checks thatgQ(z) = gP (−z) −
log(−1). Using the functions̃�P , �̃Q, gQ and the square root

√
4w2 + 1 with a cut on

the curvẽ�Q+(�Q) = −�P+(�P ), the two formulas in (2.24) rewrite more simply as the
single one

Qn(z) =
√

2sn(1/̃�Q(z))e
ngQ(z)

sn(2)
√

4�̃
2
Q(z) + 1

(
1 + O

(
1

n�

))
, (2.26)

uniformly forzin compact subsets ofC\�Q. Similarly, formula (2.25) for the error function
En may also be translated in terms of�̃P , �̃Q andgQ.

Corollary 2.11. For n large,the leading coefficient�n of Pn, that is,by Theorem2.1, the
coefficient of degree n ofPn, satisfies the following asymptotics:

�n = s−2
n (2)

(
1 + O

(
1

n�

))
, (2.27)

asn → ∞.

2.6.2. Asymptotics near the curves�P , �Q, and�E

It is also possible to obtain uniform asymptotics near the curves�P , �Q, and�E , as well
as in neighborhoods of the branch pointsz1 andz2. We have asymptotic formulas on�P ,
�Q and�E , respectively, away from the branch points, which now consist of two terms.

Theorem 2.12.Uniformly for z in compact subsets of the domain(�P \{z1, z2})∪D∞,P ∪
D0, we have

Pn(z)= (−1)n
√

2sn(1/�P (z))e
ngP (z)

sn(2)

 1√
4�2

P (z) + 1

(
1 + O

(
1

n�

))

± e2n�P (z)√
4�2

Q(z) + 1

(
1 + O

(
1

n�

)) . (2.28)

where the+sign holds inD0 and the−sign holds inD∞,P .
Uniformly for z in compact subsets of the domain

(
�Q \ {z1, z2}

)∪D∞,Q ∪D0, we have

Qn(z)= −(−1)n
√

2en(gP (z)−2z)

sn(2)

 sn(1/�P (z))√
4�2

P (z) + 1

(
1 + O

(
1

n�

))

− e2n�P (z)sn(1/�Q(z))√
4�2

Q(z) + 1

(
1 + O

(
1

n�

)) . (2.29)
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Uniformly for z in compact subsets of the domain(�E \ {z1, z2}) ∪ D∞,P ∪ D∞,Q, we
have

En(z)= (−1)n
√

2en(gP (z)−z)

sn(2)

 sn(1/�P (z))√
4�2

P (z) + 1

(
1 + O

(
1

n�

))

+ e2n�P (z)sn(1/�Q(z))√
4�2

Q(z) + 1

(
1 + O

(
1

n�

)) . (2.30)

Remark.Forzaway from�P so that Re�P (z) < 0, the asymptotic formula (2.28) reduces
to (2.23). On�P we have Re�P (z) = 0, and then the two terms in (2.28) are of comparable
magnitude. Forz ∈ �P , (2.28) can be re-written as

Pn(z)= (−1)n
√

2sn(1/�P−(z))
sn(2)

 engP−(z)√
4�2

P−(z) + 1

(
1 + O

(
1

n�

))

± engP+(z)√
4�2

P+(z) + 1

(
1 + O

(
1

n�

)) . (2.31)

Note that the asymptotic formula (2.29) (resp. (2.30)) holds in particular on�Q (resp.�E),
away from the branch pointsz1 andz2, that is, on the curve where the zeros ofQn (resp.
En) accumulate.

It may be checked that the two terms in (2.29) are analytic continuations of the two
different asymptotic formulas we have in (2.24). Forz ∈ D∞,Q, we have gP (z) − 2z +
2�P (z) = −gP (z) + 2 logz + 2" by (4.6), and then (2.29) reduces to the second formula
in (2.24) since Re�P (z) > 0 inD∞,Q. For z∈ D0, we have Re�P (z) < 0 and we obtain
the first formula in (2.24).

On�Q the two terms in (2.29) have comparable absolute values. This causes the zeros of
Qn to be close to�Q. Similarly, on�E the two terms in (2.30) have comparable absolute
values, which causes the zeros ofEn in D∞ to be close to�E .

2.6.3. Asymptotics near the branch points
Near the branch points, the asymptotic formulas involve the Airy function Ai, which is

the unique solution of the differential equation

y′′(z) = zy(z),

satisfying

Ai (z) = 1

2
√

�
z−1/4e− 2

3z
3/2

(
1 + O

(
1

z3/2

))
, (2.32)

Ai ′(z) = −1

2
√

�
z1/4e− 2

3z
3/2

(
1 + O

(
1

z3/2

))
, (2.33)
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asz → ∞ with | arg z| < �, wherez1/4 andz3/2 are defined with principal branch, see
[29] for more details. We only deal with the asymptotic behavior ofPn,Qn andEn nearz1.
Similar results can be given for the behavior near the other branch pointz2. Here we will
take the branch of the function�P (z) which is 0 atz = z1. So it behaves like

�P (z) = c(z − z1)
3/2 + O

(
(z − z1)

5/2
)

asz → z1, with c �= 0. Then we define the function

f1(z) =
[

3

2
�P (z)

]2/3

(2.34)

which is analytic forz in a neighborhood ofz1. We take that 2/3rd power so thatf1(z) is
real and negative forz ∈ �P . Then

f1(z) = c1(z − z1) + O
(
(z − z1)

2
)

(2.35)

asz → z1 with some constantc1 �= 0. Explicit calculations show that

c1 = f ′
1(z1) = 21/3e− �i

6 . (2.36)

In order to state the asymptotics near the branch points, we furthermore need to define two
functions̃sn and̂sn which are slight perturbations of the functionsn. To each interpolation
point z(2n)i of the schemeB(2n), we associate the point

z̃
(2n)
i = 2z(2n)i

1 +
√

1 + z
(2n)
i

2

4n2

and we definẽsn and̂sn as

s̃n(z) =
2n∏
i=0

(
1 − z̃

(2n)
i

2nz

)
, ŝn(z) =

2n∏
i=0

(
1 − z

(2n)
i

2nz
+ z

(2n)
i z̃

(2n)
i

16n2

)
. (2.37)

Note that (2.1) implies that locally uniformly, asn → ∞,

s̃n(z) = sn(z)

(
1 + O

(
log3 n

n2

))
, ŝn(z) = sn(z)

(
1 + O

(
log2 n

n

))
. (2.38)

If the parameter� in (2.1) equals 1, then the logn factor in the two previousO -term may
be replaced with 1.

Theorem 2.13.Let 
n > 0 be such that
n = O (1/�2
n) asn → ∞. Then,uniformly for

|z − z1| < 
n,

(−1)n+1Pn(z)= √
�e(n+1)(gP (z)+�P (z))

×
[
n1/6h1(z)Ai

(
(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))
+ n−1/6h2(z)Ai ′

(
(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))]
, (2.39)
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(−1)n+1Qn(z)

= −√
�e2ze(n+1)(gP (z)+�P (z)−2z)

×
[
n1/6h1(z)e

−2�i/3Ai
(
e−2�i/3(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))
+ n−1/6h2(z)e

2�i/3Ai ′
(
e−2�i/3(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))]
(2.40)

and

(−1)n+1En(z)

= −√
�e2ze(n+1)(gP (z)+�P (z)−2z)

×
[
n1/6h1(z)e

2�i/3Ai
(
e2�i/3(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))
+ n−1/6h2(z)e

−2�i/3Ai ′
(
e2�i/3(n + 1)2/3f1(z)

)(
1 + O

(
1

n�

))]
, (2.41)

whereh1 andh2 are two analytic functions in|z−z1| < 
n, which have explicit expressions

h1(z) =
(
N21(z) + iz−1e−2zsn(z)N22(z)

)
f1(z)

1/4,

with the branch of the fourth root inf1(z)
1/4 taken with a cut along�P , and

h2(z) =
(
−N21(z) + iz−1e−2zsn(z)N22(z)

)
f1(z)

−1/4.

Here

N21(z) = −
√

2̃sn(−2)̂sn(1/�P (z))e
−gP (z)√

4�2
P (z) + 1

,

N22(z) =
√

2̃sn(−2)egP (z)

z̃sn(−4�Q(z))

√
4�2

Q(z) + 1
.

We useN21 andN22 to denote these functions, since in what follows they will appear as
entries in a matrixN. Note that the functionsh1, h2, N21 andN22 depend onn. Note also
that the functiongP + �P is analytic nearz = z1.

From the asymptotics near the branch points, one can deduce the behavior of the extreme
zeros ofPn, Qn andEn near the branch points. We only state the result for the zeros ofPn,
Qn andEn nearz1. Recall that the Airy function Ai has only negative real zeros, which we
denote by 0> −�1 > −�2 > · · · > −�	 > · · ·.

Corollary 2.14. Let


(n) =


n−�−2/3 if 0 < � < 1

3,

log n
n

if 1
3 ���1,

1
n

if � = 1.

(2.42)
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Let zP	,n, 	 = 1, . . . , n, be the zeros ofPn, ordered by increasing distance toz1. Then for
every	 ∈ N, we have

zP	,n = z1 − �	
f ′

1(z1)
, n−2/3 + O (


(n)
) = z1 + 2−1/3e

7
6�i�	n−2/3

+O (

(n)

)
, (2.43)

asn → ∞. Let zQ	,n, 	 = 1, . . . , n, be the zeros ofQn, ordered by increasing distance to
z1. Then for every	 ∈ N,

zQ	,n = z1 − e2�i/3 �	
f ′

1(z1)
n−2/3 + O (


(n)
) = z1 + 2−1/3e− �i

6 �	n−2/3

+O (

(n)

)
, (2.44)

asn → ∞. Let zE	,n, 	�1, be the zeros ofEn, ordered by increasing distance toz1. Then
for every	 ∈ N,

zE	,n = z1 − e−2�i/3 �	
f ′

1(z1)
n−2/3 + O (


(n)
) = z1 + 2−1/3e

�i
2 �	n−2/3

+O (

(n)

)
, (2.45)

asn → ∞.

Remark. Note that the first two terms in the previous expansions do not depend on the
actual choice of the interpolation points.

3. Geometry of the problem

3.1. Trajectories of quadratic differentials

Proof of Proposition 2.4.We recall that�P and�Q will be the two inverse mappings of

z = z(w) = w

w2 − 1/4
,

given explicitly by (2.11), where the square root is defined outside a cut�P connecting the
two branch pointsz1 = i andz2 = −i. We note that�Q has a pole at 0 and from (2.11) it
follows that

�Q(z) = 1

z
+ O (z) asz → 0. (3.1)

Near infinity, we have from analyzing (2.9)

�P (z) = − 1

2
+ 1

2z
+ O

(
1

z2

)
, (3.2)

�Q(z) = 1

2
+ 1

2z
+ O

(
1

z2

)
, (3.3)
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asz → ∞. We study the curves so that12�i

∫ z

z1
(�Q − �P )(s) ds is real. If z = z(t) is

arclength parametrization of such a curve, then

Re

[∫ z(t)

z1

(�Q − �P )(s) ds

]
= 0,

which upon differentiating leads to Re
[
z′(t)(�Q − �P )(z(t))

] = 0. Sincez′(t) �= 0, and
(�Q − �P )(z) �= 0 (except at the branch pointsz1 andz2), we find that−z′(t)2(�Q −
�P )(z(t))

2 > 0. Thus the curve is what is known in geometric function theory as a trajectory
of the quadratic differential

−(�Q − �P )
2(z) dz2, (3.4)

see[34,41]. Now, (�Q − �P )
2(z) is well-defined in the left half-plane, irrespective of the

exact choice for�P . It is analytic with simple zeros at the branch pointsz1 andz2, and a
double pole at 0.

Trajectories of the quadratic differential (3.4) which start from or end atz1 or z2 are
called critical trajectories. From the local structure of trajectories of quadratic differentials,
it is known that three trajectories emanate from a simple zero, with tangent directions at
this point that divide the plane locally into three sectors of equal aperture 2�/3. Since�P

and�Q are real functions, that is�P (z̄) = �P (z) and�Q(z̄) = �Q(z), we deduce that the
trajectories are symmetric with respect to the real axis. On the other hand, according to the
location of the pointz with respect to the cut�P , we may have√

1 + (−z)2 =
√

1 + z2 whence�P (−z) = −�P (z) and�Q(−z) = −�Q(z)

or √
1 + (−z)2 = −

√
1 + z2 whence�P (−z) = −�Q(z) and�Q(−z) = −�P (z).

From this, we deduce that trajectories are symmetric with respect to the origin, hence also
symmetric with respect to the imaginary axis. Consequently the directions of the three
trajectories atz1 can only have arguments�/2, 7�/6, 11�/6 or �/6, 5�/6, 3�/2. In the
second case, the trajectory with initial direction 3�/2 must reach the double pole at 0. Since
locally near the origin, the quadratic differential isi2z−2dz2, it is known that trajectories
near this point are closed contours around it, see[34, p. 215]. Hence the second case cannot
occur, so that the three trajectories emanating fromz1 have initial directions�/2, 7�/6,
11�/6. We label these three trajectories by�E,1, �P , and�Q respectively. The trajectory
�E,1 can only connectz1 with infinity along the imaginary axis.

For the second trajectory�P , we consider its global behavior in the second quadrant,
which we callG. It is known that any trajectory inG must begin and end either atz1, or
at infinity, or on the boundary ofG. It is also known that there can be no closed Jordan
curve consisting of trajectories, since there are no poles of the quadratic differential inG.
For these properties of trajectories of quadratic differentials, see[34, Chapter 8]and also
[4]. So the second critical trajectory that starts atz1, cannot end atz1, and it should end in
G either on the negative real axis, or on the positive imaginary axis, or at infinity. If�P

meets the positive imaginary axis, then together with its mirror image in the right half-plane,
it would be a closed Jordan curve not enclosing a pole. This is impossible. Next assume
that�P ends at infinity. At infinity, we have−(�Q − �P )

2(∞) = −1. This means that
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the quadratic differential has a pole of order 4 at infinity, see[41], and all trajectories that
extend to infinity arrive there with a vertical tangent. Assume that two critical trajectories
extend to infinity inG. Then these trajectories are the boundary of a regionG′ in G. Any
trajectory inG′ begins and ends at infinity with a vertical tangent. However, according to
[41, Theorem 7.4]a pole of order 4 has a neighborhood, so that any closed trajectory lying
entirely in that neighborhood begins and ends at the pole, but from opposite directions. This
is a contradiction, since there will be trajectories inG′ that are arbitrarily close to infinity.
This contradiction shows that there can be at most one critical trajectory that extends to
infinity, namely�E,1. Hence�P can only meet the negative real axis. Then, by symmetry,
its mirror image in the lower half-plane will be its continuation toz2, so that�P connects
z1 with z2 in the left half-plane. By symmetry with respect to the imaginary axis, the third
trajectory�Q connectsz1 with z2 in the right half-plane. Finally, by symmetry with respect
to the real axis, we also find the trajectory�E,2 that emanates fromz2 and extends to infinity.
This completes the proof of Proposition2.4.

3.2. Precise structure of the Riemann surface

Proof of Proposition 2.3.Assertion (a) is clear since�P and�Q are given explicitly by
(2.11), where the square root is defined outside the cut�P . Assertion (b) follows from (3.2)
and (3.3). Finally, in the proof of Proposition2.4, we have shown the existence of the curve
�P lying in the left half-plane and satisfying relation (2.13). This establishes assertion (c)
of Proposition2.3, which is proved completely.

4. Measures and functions associated with the Riemann surface

In this section we study the measures�P , �Q, �E , and the functions�P andgP . These
measures and functions that are associated with the Riemann surface satisfy several relations
that will be used in the transformations of the Riemann–Hilbert problem that follow in later
sections. We also prove Theorem2.6and Lemma2.9 in this section.

4.1. Properties of the measures�P , �Q, and�E

We start with a lemma.

Lemma 4.1. We have
1

�i

∫
�P

(�Q − �P )+(s) ds = 1. (4.1)

Proof. Let � be a closed contour on the sheetR P going around�P once in the positive
direction. Then the residue theorem for the exterior of� gives

1

2�i

∫
�
�P (s) ds = 1

2
,
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because�P is analytic outside� and we have (3.2). If we shrink� to �P , then the integral
becomes

1

�i

∫
�P

((�P )−(s) − (�P )+(s)) ds = 1.

Taking into account that(�P )− = (�Q)+, we obtain (4.1).

Now we can prove Theorem2.6.

Proof of Theorem 2.6.The curve�P is such that forz ∈ �P , the integral 1
�i

∫ z

z1
(�Q −

�P )+(s) ds is real, see Proposition2.3. For z= z1, it has the value 0, and forz = z2 it
has the value 1 by (4.1). Letz = z(t), t ∈ [0, T ], be arclength parametrization of�P . The
derivative of

t �→ 1

�i

∫ z(t)

z1

(�Q − �P )+(s) ds (4.2)

is equal to 1
�i

(
�Q(z(t)) − �P (z(t))

)
z′(t) and this is different from 0 fort ∈ (0, T ). Thus

(4.2) is strictly increasing from 0 fort = 0 to 1 for t = T . This immediately implies that
�P defined by (2.16) is a probability measure on�P . By symmetry,�Q is a probability
measure on�Q.

For �E we observe that (2.17) defines a real measure on�E , since, by Proposition2.3,
1
�i

∫ z

z1
(�Q − �P )(s) ds is real forz ∈ �E,1 ∪ �E,2. Using an argument based on arclength

parametrization, similar to the one above, we find that on each part�E,j , j = 1,2, the
measure�E is either positive or negative. Since�Q(s)−�P (s) = 1+O (1/s2) ass → ∞
(see (3.2)–(3.3)), we have forz ∈ �E,1,

1

�i

∫ z

z1

(�Q − �P )(s) ds = 1

�i
(z − z1) + O (1) asz → ∞, z ∈ �E,1.

Since Im(z − z1) → +∞ asz → ∞ along�E,1, the integral is positive asz → ∞ along
�E,1. As the measure�E is of constant sign on�E,1, we may thus deduce that it is positive
everywhere on�E,1. The reasoning for�E,2 is similar.

4.2. Properties ofgP and�P

The functiongP was defined in (2.20). This is a multi-valued function, depending on the
choice of the branch of the logarithm log(z − s), which we assume depends ons ∈ � in a
continuous way. Since�P is a probability measure, theg-function is defined modulo 2�i.

Lemma 4.2. For the derivative of the functiongP we have

g′
P (z) = 2�P (z) + 1, z ∈ C \ �P , (4.3)

Proof. The derivative ofgP is easily obtained as

g′
P (z) = 1

�i

∫
�P

1

z − s
(�Q − �P )+(s) ds.
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If � is a closed contour going around�P onR P in the positive direction but withzoutside
�, then (since(�Q)+ = (�P )−)

g′
P (z) = 1

�i

∮
�

�P (s)

z − s
ds.

The integral over� can be calculated with the residue theorem for the exterior of�, for
which there is a residue atz and at∞ given by (3.2). This proves (4.3).

A useful explicit expression ofgP in terms of the mapping function�P is given in the
next lemma.

Lemma 4.3. The functiongP has the following explicit expression in terms of the mapping
functions�P ,

gP (z)= 2z

(
�P (z) + 1

2

)
− log

(
�2
P (z) − 1

4

)
− 1 − log(−2),

for z ∈ C \ �P . (4.4)

Proof.We letz ∈ C \ �P and putw = �P (z). Taking a derivative of (2.9), we find, since
w′(z) = 1

z′(w) ,

2 = −
(

1

(w − 1/2)2
+ 1

(w + 1/2)2

)
w′

Thus

2�P (z) + 1= −
(
w + 1

2

)(
+ 1

(w − 1/2)2
+ 1

(w + 1/2)2

)
w′

= −
(

1

w + 1/2
+ 1

w − 1/2
+ 1

(w − 1/2)2

)
w′

= d

dz

[
− log(w2 − 1/4) + 1

w − 1/2

]
.

By (4.3), we then see that

gP (z) = − log(w2 − 1/4) + 1

w − 1/2
+ C

for some constantC. The constant can be determined from the behavior forz → ∞, since
gP (z) = logz + O (1/z), andw = �P (z) = −1

2 + 1
2z + O (1/z2). The result is that

C = 1 − log(−2). Using (2.9) we then find (4.4).

We recall that the function�P was introduced in (2.21). The next lemma connects�P

with gP , and gives jump properties ofgP across�P . It will be frequently used in what
follows. Throughout the rest of the paper we use" to denote the constant

" = − i�
2
. (4.5)
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Lemma 4.4. For z ∈ C \ �P , we have

gP (z) = log z + z − �P (z) + ", (4.6)

On the contours we have

gP+(z) + gP−(z) = 2 log z + 2z + 2", z ∈ �P , (4.7)

and

gP+(z) − gP−(z)= −�P+(z) + �P−(z)
= −2�P+(z) = 2�P−(z), z ∈ �P . (4.8)

Proof. Integrating (4.3) fromz1 to z over some path inC \ �P , we get

gP (z) − gP (z1)= 2
∫ z

z1

�P (s) ds + (z − z1), (4.9)

= −2�P (z) + 2
∫ z

z1

�Q(s) ds + (z − z1), (4.10)

= −2�P (z) + 2
∫ z

z1

ds

s
− 2

∫ z

z1

�P (s) ds + (z − z1). (4.11)

Hence
gP (z) = log z + z − �P (z) + (gP (z1) − log z1 − z1),

so that (4.6) holds with constant

" = gP (z1) − logz1 − z1.

Using the explicit expressions (4.4) forgP we are able to show that" is equal to (4.5).
Next, we use Lemma4.2to find

gP+(z) + gP−(z) = 2
∫ z

z1

(�P+ + �P−)(s) ds + 2(z − z1) + 2g(z1), z ∈ �P .

On�P we have�P−(s) = �Q+(s), so that

gP+(z) + gP−(z) = 2
∫ z

z1

(�P + �Q)+(s) ds + 2z − 2z1 + 2i, z ∈ �P .

Since�P (s) + �Q(s) = 1
s
, we obtain

gP+(z) + gP−(z) = 2 log z − 2 log z1 + 2z = 2 log z + 2z + 2", z ∈ �P .

This proves (4.7). Finally, if we take (4.6) on the +and −sides of�P and subtract,
we get

gP+(z) − gP−(z) = −�P+(z) + �P−(z), z ∈ �P .

This gives (4.8), since�P+(z) = −�P−(z).

SincegP (z) = log z + O (1/z) asz → ∞, we get from (4.6) that

�P (z) = z + " + O
(

1

z

)
asz → ∞. (4.12)
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We also see from (4.6) that�P is a multivalued function, which is defined modulo 2�i,
sincegP is defined modulo 2�i.

Proof of Lemma 2.9.By Proposition2.3and the definition of�P , we have that Re�P = 0
on�P , �Q, �E,1, and�E,2.

We know that Re�P is a harmonic function inC \ (�P ∪ {0}). Since�Q(z) ∼ 1/z
asz → 0, it easily follows from (2.21) that Re�P (z) → −∞ asz → 0. Then by the
maximum principle for harmonic functions we get that Re�P < 0 onD0.

As z → ∞, we have (4.12). On the unbounded curves�E,1 and�E,2 we have Re�P =
0. As z → ∞ in the unbounded domainD∞,P we have lim sup Re(z + ")�0, so that
lim sup Re�P (z)�0 by (4.12). Again it follows by the maximum principle for harmonic
functions that Re�P < 0 onD∞,P .

For the remaining domainD∞,Q, we have that Re�P is harmonic, with lim inf Re�P (z)

�0 asz → ∞ with z ∈ D∞,Q by (4.12). Thus again by the maximum principle, Re�P > 0
onD∞,Q. This completes the proof of Lemma2.9.

5. The Riemann–Hilbert problem and the first two transformations

Throughout Sections 5 and 6, we will restrict the analysis tonormal indiceswith respect
to the given schemeB := B(2n) = {z(2n)i }2n

i=0 of interpolation points, namely indicesn ∈ �
where

� = {n ∈ N, Qn satisfying (1.3) has exact degreen}. (5.1)

Moreover, we assume thatthe scheme B of interpolation points is such that the set� is
infinite.

Remark. Let n ∈ � and letpn+1,n−1 andqn+1,n−1 be the rational interpolants of type
(n + 1, n− 1) to ez satisfying

pn+1,n−1(z) + qn+1,n−1(z)e
z = O (�2n+1(z)), where

�2n+1(z) =
2n∏
i=0

(
z − z

(2n)
i

)
.

Thenpn+1,n−1 is of exact degreen+1. Indeed, assume that degpn+1,n−1 < n+1. Then the
pair(pn+1,n−1, qn+1,n−1)would be a pair of type(n, n−1)solving the rational interpolation
problem of type(n, n), which is impossible sincen ∈ �.

Our asymptotic analysis is based on the Riemann–Hilbert problem forY formulated in
the introduction, see (1.4) and (1.5). In this section we prove that, whenn belongs to�, the
Riemann–Hilbert problem has a unique solution and that the solution is given in terms of
the polynomialsPn, Qn, and the remainderEn. We also do the first two transformations of
the Riemann–Hilbert problem, which consist of a normalization of the problem at infinity,
and a deformation of contours.
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5.1. The Riemann–Hilbert problem

We show that the Riemann–Hilbert problem forY andn ∈ � has a solution in terms of
the rational interpolants.

Theorem 5.1. Let n ∈ � and Pn, Qn, En, and �n be as above. We assume that n is
large enough so that all roots of�n are inside the contour�. Then the solution of the
Riemann–Hilbert problem for Y(see the introduction)is unique and is given by

Y (z) =
(
pn+1,n−1(2nz) �−1

n (z)qn+1,n−1(2nz)
Pn(z) �−1

n (z)Qn(z)

)
, (5.2)

for z outside�, and

Y (z) =
(
pn+1,n−1(2nz) �−1

n (z)e−nzen+1,n−1(2nz)
Pn(z) �−1

n (z)e−nzEn(z)

)
, (5.3)

for z inside�. In the first rows of(5.2)and(5.3)we use the rational interpolants of indices
n + 1, n − 1 normalized so thatpn+1,n−1(2nz) is a monic polynomial of degreen + 1,
which, in view of the previous remark,is possible. In the second row we use the rational
interpolants of indicesn, n normalized so thatQn(z) = qn,n(2nz) is a monic polynomial
of degree n.

Proof.The givenY is analytic inside and outside the contour�. This is clear from (5.2) and
(5.3), except perhaps for the second column of (5.3) which has possible singularities at the
roots of�n. However, the singularities are removable sinceen1,n2(z) = O (�n1+n2+1(z)).
Next, the normalizations such thatpn+1,n−1(2nz) andQn(z) are monic polynomials of
exact degreen + 1 andn respectively can always be performed sincen ∈ �. From this
choice of normalizations, we see that the asymptotic condition (1.5) is satisfied.

The jump condition can easily be checked. For the entries in the first column it reads

(Y11)+ = (Y11)−, (Y21)+ = (Y21)−,
which is indeed so sinceY11 andY21 are both polynomials. We also have

(Y12)+(z)= �−1
n (z)e−nzen+1,n−1(2nz)

= �−1
n (z)

(
pn+1,n−1(2nz)e

−2nz + qn+1,n−1(2nz)
)

= �−1
n (z)e−2nz(Y11)−(z) + (Y12)−(z)

and this is the jump condition (1.4) for the second entry in the first row. The last entry is
handled in the same way.

To prove uniqueness, we assume thatỸ is another solution of the Riemann–Hilbert
problem. First observe that detY is a scalar function which is analytic inC \ �. Because
of (1.4), we have that(detY )+(z) = (detY )−(z) for z ∈ �, so that detY has no jump,
making detY an entire function. For largez we have detY (z) = 1 + O (1/z) by (1.5),
hence by Liouville’s theorem detY = 1 everywhere. We can therefore considerỸ Y−1,
which is analytic inC \ �. There is no jump on� since(Ỹ Y−1)+(z) = (Ỹ Y−1)−(z) for
everyz ∈ �, hencẽYY−1 is entire (i.e., each entry is an entire function). For largez we



F. Wielonsky / Journal of Approximation Theory 131 (2004) 100–148 125

haveỸ Y−1(z) = I + O (1/z), hence Liouville’s theorem implies that̃YY−1(z) = I for
everyz, and hencẽY (z) = Y (z).

5.2. First transformation

We will use the functiongP , and the constant" = − i�
2 from Section 4.3 to transform the

Riemann–Hilbert problem forY to a Riemann–Hilbert problem forU, given by

U(z) = L−n−1Y (z)

(
e−(n+1)gP (z) 0

0 e(n+1)gP (z)

)
Ln+1, (5.4)

whereL is the constant diagonal matrix

L =
(
e" 0
0 e−"

)
. (5.5)

For the contour� we take� = �P ∪ �R, where�R is a contour connectingz2 to z1 and
lying in D∞,Q. Then Re�P > 0 on�R by Lemma2.9.

We note thatU is analytic onC \ �, sinceegP (z) is analytic and single-valued onC \ �P

and�P ⊂ �.
SincegP (z) = logz+ O (1/z) asz → ∞, we have e(n+1)gP (z) = zn+1[1+ O (1/z)] as

z → ∞. Hence

U(z) = I + O
(

1

z

)
, z → ∞. (5.6)

SoU is normalized at infinity.
The jump relation forU needs to be worked out on the two pieces of the contour

� = �P ∪ �R. For z∈ �P we have

U+(z)=U−(z)
(
e−(n+1)[gP+(z)−gP−(z)] ze2zs−1

n (z)e(n+1)[−2 logz−2z+gP+(z)+gP−(z)−2"]
0 e(n+1)[gP+(z)−gP−(z)]

)
.

(5.7)
Taking into account Lemma4.4, we can simplify the jump (5.7) to

U+(z) = U−(z)
(
e2(n+1)�P+(z) ze2zs−1

n (z)

0 e2(n+1)�P−(z)

)
, z ∈ �P .

On the part�R we have

U+(z) = U−(z)
(

1 ze2zs−1
n (z)e(n+1)[−2 logz−2z+2gP (z)−2"]

0 1

)
. (5.8)

If we use Lemma4.4then (5.8) can be re-written as

U+(z) = U−(z)
(

1 ze2zs−1
n (z)e−2(n+1)�P (z)

0 1

)
, z ∈ �R.

Summarizing, we have the following Riemann–Hilbert problem forU
1. U is analytic onC \ �.
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2. U satisfies the following jump relations

U+(z) = U−(z)
(
e2(n+1)�P+(z) ze2zs−1

n (z)

0 e2(n+1)�P−(z)

)
, z ∈ �P , (5.9)

U+(z) = U−(z)
(

1 ze2zs−1
n (z)e−2(n+1)�P (z)

0 1

)
, z ∈ �R. (5.10)

3. U(z) = I + O
(

1
z

)
asz → ∞.

The contour�R is in the region where Re�P is positive. The jump matrix in (5.10) for
U on the contour�R is then the identity matrixI plus a matrix with entries that tend to zero
exponentially fast asn → ∞.

The function�P+ = −�P− is purely imaginary on�P because of (2.13), so that the
diagonal elements of the jump matrix on�P are oscillatory.

5.3. Deformation of contours

The jump matrix in (5.9) can be written as a product of three matrices(
e2(n+1)�P+(z) ze2zs−1

n (z)

0 e2(n+1)�P−(z)

)
=

(
1 0

z−1e−2zsn(z)e
2(n+1)�P−(z) 1

)(
0 ze2zs−1

n (z)

−z−1e−2zsn(z) 0

)
×

(
1 0

z−1e−2zsn(z)e
2(n+1)�P+(z) 1

)
. (5.11)

Instead of jumping over�P in one jump, we will make three smaller jumps, and rather than
jumping over one contour, we jump over three contours, and each contour deals with one
of the matrices in the product (5.11). We will open up a lens around�P , which consists of
two contours�P− ∪ �P+ connectingz1 andz2, such that�P− is on the minus side of�P

and�P+ is on the plus side of�P , but still inside the region where Re�P < 0.
These contours are drawn in Fig.5.
All together there are 4 contours, and they determine 4 regions in the plane. The second

transformationU �→ T will be defined in each of these regions separately. We defineT as
follows. We take

T (z) = U(z), (5.12)

for z in the unbounded region, and in the middle region bounded by�P+ and�R. In the
two regions near�P we put

T (z) =
{
U(z)VP−(z) for z in the region bounded by�P− and�P ,

U(z)V −1
P+ (z) for z in the region bounded by�P and�P+ ,

(5.13)

where

VP−(z) = VP+(z) =
(

1 0
z−1e−2zsn(z)e

2(n+1)�P (z) 1

)
. (5.14)

Then we have the following Riemann–Hilbert problem forT.
1. T is analytic in each of the 4 regions,
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Fig. 5. Deformation of contours around�P .

2. T has a jump on each of the 4 contours

T+(z) = T−(z)Vs(z), z ∈ �s ,

wheres stand for any of the four symbolsP,P−, P+, R. The matricesVP− , VP+ have
already been defined above. The other jump matrices are

VP (z)=
(

0 ze2zs−1
n (z)

−z−1e−2zsn(z) 0

)
, (5.15)

VR(z)=
(

1 ze2zs−1
n (z)e−2(n+1)�P (z)

0 1

)
, (5.16)

3. T (z) = I + O
(

1
z

)
asz → ∞.

Observe that all jumps, except for the jump on�P , tend to the identity matrix exponen-
tially fast asn → ∞. Hence we expect that the dominating contribution is the jumpVP on
�P .

6. Construction of parametrices and final transformation

6.1. Parametrix for the exterior region

We will now solve a Riemann–Hilbert problem for a matrix valued functionN on the
contour�P which, in view of what was said at the end of the previous section, is expected
to describe the main contribution of the Riemann–Hilbert problem ofT.
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We look forN : C \ �P → C
2×2 satisfying

1. N is analytic inC \ �P .
2. N has jump on�P given by

N+(z) = N−(z)
(

0 ze2zs−1
n (z)

−z−1e−2zsn(z) 0

)
, z ∈ �P . (6.1)

3. N(z) = I + O
(

1
z

)
asz → ∞.

Note that, since the jump in relation (6.1) involves the functionsn, the matrixN will depend
on the degreen. Recall also that the functions̃sn and̂sn were defined in (2.37).

Proposition 6.1. A solution of the Riemann–Hilbert problem for N is given by

N(z) =
(
F1(�P (z)) F1(�Q(z))

F2(�P (z)) F2(�Q(z))

)
, (6.2)

where

F1(w)= − (w − 1/2)G(w)√
2̂sn(−2)

√
4w2 + 1

, (6.3)

F2(w)=
√

2̃sn(−2)(w + 1/2)G(w)√
4w2 + 1

, (6.4)

with
√

4w2 + 1 defined and analytic inC \ �P+(�P ), and such that it is positive for large
positive w. The function G is defined by

G(w) =
 2(w − 1/2)̂sn(1/w)e

− (w+1/2)
(w−1/2) for w ∈ �(R P ),

2w
(w+1/2)̃sn(−4w)e

− (w−1/2)
(w+1/2) for w ∈ �(R Q).

(6.5)

Proof. Let us consider the first row(N11, N12) of N. From (6.1) we get the following jumps
on�P {

(N11)+(z) = −z−1e−2zsn(z)(N12)−(z),
(N12)+(z) = ze2zs−1

n (z)(N11)−(z),
z ∈ �P , (6.6)

We can seeN11 as a function on the sheetR P of the Riemann surfaceR andN12 as
a function onR Q. Then we transform the problem fromR with the variablez, to the
complexw-plane, via the mapping� : R → C. The variablesz andw are connected by
(2.9). The images of the two sheets, the images of the branch pointsz1, z2, and the image
of the cut�P are shown in Fig.2.

Note that the images of�P under the mappings�P+ and�P− (positive and negative
boundary values of�P on �P ) give two arcs fromw1 to w2. They are oriented as shown
in Fig. 2. The orientation corresponds to the orientation of�P . Together the arcs make up
a simple closed loop around−1/2.

Now we transplant the (as yet unknown) functionsN11 andN12 from the Riemann surface
to thew-plane, by definingF1 as follows:

F1(w) =
N11

(
w

w2−1/4

)
, w ∈ �(R P ),

N12

(
w

w2−1/4

)
, w ∈ �(R Q).

(6.7)
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ThenF1 is analytic inC \ �P±(�P ). The jumps thatF1 should satisfy can be determined
from (6.6) and are given by{

F1+(w) = ze2zs−1
n (z)F1−(w), w ∈ �P−(�P ),

F1+(w) = −z−1e−2zsn(z)F1−(w), w ∈ �P+(�P ),
(6.8)

wherez = z(w) = w
w2−1/4

.
The asymptotic condition onN implies thatN11(z) → 1,N12(z) → 0, asz → ∞. For

F1, this means that
F1(−1/2) = 1, F1(1/2) = 0. (6.9)

We also wantF1(w) to have a finite limit asw → ∞, sincew = ∞ corresponds toz = 0
on theQ-sheet.

We now seekF1 in the form

F1(w) = − (w − 1/2)G(w)√
2̂sn(−2)

√
4w2 + 1

. (6.10)

ThenG should be analytic inC \ �P±(�P ) with jumps{
G+(w) = ze2zs−1

n (z)G−(w), w ∈ �P−�P ),

G+(w) = z−1e−2zsn(z)G−(w), w ∈ �P+(�P ),
(6.11)

with z = z(w). The normalization forG is

G(−1/2) = −2̂sn(−2). (6.12)

Taking logarithms in (6.11) and using the well-known Plemelj formula, one reconstructsG
as given by (6.5), which indeed satisfies (6.11) and (6.12). Then by (6.10) it follows thatF1
has the correct jumps (6.8) and normalization (6.9). Then from (6.7) we recoverN11 and
N12 in terms ofF1 by

N11(z) = F1(�P (z)), N12(z) = F1(�Q(z)).

Then the jump (6.6) is satisfied, and in addition the normalization at infinity is correct. So
we have found the first row ofN.

The proof for the second row is similar. The only difference is that we have a different
normalization at infinity, which leads to the construction of a functionF2 that satisfies the
same jump (6.8) as F1, but is normalized by

F2(−1/2) = 0, F2(1/2) = 1.

Similar calculations then lead to the formula (6.4) with the same functionG.

We remark that the entries ofN have fourth root singularities at the two branch pointsz1
andz2. More precisely,

Lemma 6.2. For each given n sufficiently large,the entries of N behave as follows near
the branch points. Asz → zj with j = 1,2, we have{

Nk1(z) = O (|z − zj |−1/4
)
,

Nk2(z) = O (|z − zj |−1/4
)
,

k = 1,2. (6.13)
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Proof. Sincew1 is a non-degenerate critical point of the mappingz = z(w), we have for
the inversew = �P (z) asz → z1 = z(w1),

�P (z) = w1 + c(z − z1)
1/2 + O (z − z1) (6.14)

wherec is a non-zero constant. Sincew1 is a simple root of 4w2 + 1, it then follows that√
4�2

P (z) + 1 = c2(z − z1)
1/4 + O

(
|z − z1|3/4

)
, z → z1, (6.15)

with c2 �= 0. Since the numerators ofF1, F2 as given by (6.3) and (6.4), do not vanish for
w = w1, we find

Nk1(z) = Fk(�P (z)) = O
(
|z − z1|−1/4

)
, k = 1,2,

asz → z1. In a similar way we find thatNk2(z) = O (|z − z1|−1/4
)

asz → z1. This proves
(6.13) forj = 1.

The behavior near the other branch pointz2 follows in a similar way.

Remark. It will be useful to have another representation for the entries in the second row
of N. They are

N21(z) = −
√

2̃sn(−2)̂sn(1/�P (z))e
−gP (z)√

4�2
P (z) + 1

,

N22(z) =
√

2̃sn(−2)egP (z)

z̃sn(−4�Q(z))

√
4�2

Q(z) + 1
. (6.16)

It may be checked directly that these functions have the right asymptotics asz → ∞, and
satisfy the correct jump relations on�P . They also satisfy theO -conditions of Lemma6.2.

The Riemann–Hilbert problem forT is now very close to the Riemann–Hilbert problem
for N because the jumps forT andN on the contour�P are the same and the jumps for
T on the other contours tend to the identity matrix asn → ∞, uniformly away from the
branch points. So we expect thatT behaves likeN asn → ∞ away from the branch points.
However, in order to justify this, a more detailed analysis of the Riemann–Hilbert problem
near the branch points is needed.

6.2. Parametrices near the branch points

Before starting the construction of these parametrices, we state some relations and esti-
mates satisfied by the functionssn, that were defined in (2.22). Recall that the interpolation
pointsz(2n)i are subject to the growth condition (2.1).

Lemma 6.3. For anyz1, z2 andz3 in C \ {0} such thatz−1
1 + z−1

2 = z−1
3 , we have

sn(z1)sn(z2) = sn(z3)

(
1 + O

(
log2 n

n

))
, n → ∞. (6.17)
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In particular, with z1 = z, z2 = −z andz3 = ∞, we get

sn(z)sn(−z) = 1 + O
(

log2 n

n

)
, n → ∞. (6.18)

We also have

sn(1/�P (z))sn(1/�Q(z)) = sn(z)

(
1 + O

(
log2 n

n

))
, n → ∞. (6.19)

Moreover,

sn(z) = O
(
n

1−�
2|z|

)
, s−1

n (z) = O
(
n

1−�
2|z|

)
, n → ∞ (6.20)

and,for any z inC \ {0},
|sn(z) − 1|�(1 + �n/(2n|z|))

(
exp(�n/|z|) − 1

)
, (6.21)

where�n has been defined in(2.1)as the radius of a diskD n that contains all the points
ofB(2n).

Proof. In order to prove the first estimate, we group together the factors insn(z1) andsn(z2)

corresponding to the same interpolation pointz
(2n)
i . Then, recalling (2.1), we notice that, as

n → ∞, (
1 − z

(2n)
i

2nz1

)(
1 − z

(2n)
i

2nz2

)
=

(
1 − z

(2n)
i

2nz3

)(
1 + O

(
log2 n

n2

))
.

Since, asn → ∞, (
1 + O

(
log2 n

n2

))2n+1

= 1 + O
(

log2 n

n

)
,

equality (6.17) is proved. The number�P (z) and�Q(z) are the two roots of (2.10), hence

�P (z) + �Q(z) = 1

z
,

so that (6.19) is a consequence of (6.17). The estimates (6.20) follow from the inequalities

2n∏
i=0

(
1 − |z(2n)i |

2n|z|

)
� |sn(z)|�

2n∏
i=0

(
1 + |z(2n)i |

2n|z|

)
,

the estimates

exe− x2
n+x �

(
1 + x

n

)n
�ex, −n�x,

and (2.1). The inequality (6.21) follows also easily from the definition ofsn, (2.1), and the
following elementary inequality: Ifu1, . . . , uN are complex numbers, then∣∣∣∣∣

N∏
n=1

(1 + un) − 1

∣∣∣∣∣ �
N∏
n=1

(1 + |un|) − 1.
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The construction of the local parametrices resembles the construction described in Section
6.2 of[27]. The parametrices consist of two new contours�1 and�2 which are small circles
of radius
n = O (1/�2

n) asn tends to infinity, centered at the two branch points. Note that
if � in (2.1) is different from 1, then
n depends onn and the contours�1 and�2 shrink to
the branch points asn becomes large. Inside each of these contours the Riemann–Hilbert
problem forT is solved exactly.

Zooming in near the branch pointz1 gives a Riemann–Hilbert problem with five contours
�P− ,�P ,�P+ ,�R,�1. The jumps on these contours are

VP−(z) = VP+(z)=
(

1 0
z−1e−2zsn(z)e

2(n+1)�P (z) 1

)
VP =

(
0 ze2zs−1

n (z)

−z−1e−2zsn(z) 0

)
VR(z)=

(
1 ze2zs−1

n (z)e−2(n+1)�P (z)

0 1

)
.

We look for a 2× 2 matrix valued functionM(1) defined within the disk�1 surrounded
by �1, such that
1. M(1) is analytic in�1 \ (�P ∪ �P− ∪ �P+ ∪ �R),
2. M(1) has the jumps

M
(1)
+ (z) = M

(1)
− (z)Vs(z), z ∈ �s ,

wheres stands for any of the symbolsP,P−, P+, andR.
3. On�1 we have thatM(1) matchesN in the sense that

M(1)(z) =
(
I + O

(
1

n(�+1)/2

))
N(z) (6.22)

uniformly for z ∈ �1.
A local parametrix can be built which uses the conformal mappingf1 from �1 onto a

convex neighborhood of 0 defined by

�P (z) = 2

3
[f1(z)]

3/2 .

It maps�P onto a part of the negative real axis. Moreover, freedom is left, which allows
one choosing�R so that it is mapped to a part of the positive real line, and�P− and�P+ so
that they are mapped onto rays in the complexs-plane. We denote the images of�P , �P− ,
�P+ , and�R, by �P , �P− , �P+ and�R. These contours are shown in Fig.6. On these
contours we use the constant jump matrices

V̂P− = V̂P+ =
(

1 0
1 1

)
on�P− and�P+ ,

V̂P =
(

0 1
−1 0

)
on�P , and

V̂Up =
(

1 1
0 1

)
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Fig. 6. The contours for�(1)

on�R. This Riemann–Hilbert problem is well-known and its solution�(1) is given in terms
of the Airy function Ai(z) by

�(1)(s)=
(

Ai (s) −Ai (�2
3s)

Ai ′(s) −�2
3Ai ′(�2

3s)

)(
e−i�/6 0

0 ei�/6

)
, s ∈ I,

�(1)(s)=
(

Ai (s) −Ai (�2
3s)

Ai ′(s) −�2
3Ai ′(�2

3s)

)(
e−i�/6 0

0 ei�/6

)
V̂P− , s ∈ II,

�(1)(s)=
(

Ai (s) �2
3Ai (�3s)

Ai ′(s) Ai ′(�3s)

)(
e−i�/6 0

0 ei�/6

)
V̂ −1
P+ , s ∈ III,

�(1)(s)=
(

Ai (s) �2
3Ai (�3s)

Ai ′(s) Ai ′(�3s)

)(
e−i�/6 0

0 ei�/6

)
, s ∈ IV,

where�3 = e2�i/3 is a primitive third root of unity.
With the above definitions of�(1) andf1 it may then be shown that for any analytic

prefactorE(1) the matrixM(1) defined by

M(1)(z)=E(1)(z)�(1)((n + 1)2/3f1(z))

×
(
z−1/2e−zs

1/2
n (z)e(n+1)�P (z) 0

0 z1/2s
−1/2
n (z)eze−(n+1)�P (z)

)
. (6.23)

satisfies the jump conditions on�s , wheres is any of the symbolsP,P−, P+, andR. The
extra factorE(1) has to be chosen in such a way thatM(1) satisfies the matching condition
on�1 as well. We choose

E(1)(z)= √
�ei�/6N(z)

(
z1/2ezs

−1/2
n (z) 0
0 z−1/2e−zs

1/2
n (z)

)

×
(

1 −1
i i

)(
((n + 1)2/3f1(z))

1
4 0

0 ((n + 1)2/3f1(z))
− 1

4

)
. (6.24)
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On the part of�1 that lies in(f1)
−1 (I ) (the arc between�P− and�R) the asymptotic

expansions for the Airy functions (2.32) and (2.33) give

Ai ((n + 1)2/3f1(z))

= 1

2
√

�
(n + 1)−1/6 (f1(z))

− 1
4 e−(n+1)�P (z)

(
1 + O

(
1

n

))
,

Ai ((n + 1)2/3�2
3f1(z))

= 1

2
√

�
(n + 1)−1/6 (f1(z))

− 1
4 ei�/6e(n+1)�P (z)

(
1 + O

(
1

n

))
,

Ai ′((n + 1)2/3f1(z))

= −1

2
√

�
(n + 1)1/6 (f1(z))

1
4 e−(n+1)�P (z)

(
1 + O

(
1

n

))
,

Ai ′((n + 1)2/3�2
3f1(z))

= −1

2
√

�
(n + 1)1/6 (f1(z))

1
4 e−i�/6e(n+1)�P (z)

(
1 + O

(
1

n

))
.

Here the fourth root in(f1(z))
1
4 is defined with a cut along�P . On this part of�1, we have

M(1)(z) = 1

2
√

�
E(1)(z)

(
(n + 1)−1/6 0

0 (n + 1)1/6

)
×

(
(f1(z))

− 1
4 e−(n+1)�P (z)

(
1 + O ( 1

n

)) − (f1(z))
− 1

4 ei�/6e(n+1)�P (z)
(
1+O ( 1

n

))
− (f1(z))

1
4 e−(n+1)�P (z)

(
1+O ( 1

n

)) − (f1(z))
1
4 ei�/6e(n+1)�P (z)

(
1+O ( 1

n

)) )

×
(
e−i�/6z−1/2e−zs

1/2
n (z)e(n+1)�P (z) 0
0 ei�/6z1/2s

−1/2
n (z)eze−(n+1)�P (z)

)
.

After plugging the expression (6.24) of E(1)(z) and performing straightforward compu-
tations, we get

M(1)(z) = N(z)

(
1 + O ( 1

n

)
ze2zs−1

n (z)O ( 1
n

)
z−1e−2zsn(z)O

( 1
n

)
1 + O ( 1

n

)
.

)
We now check that the matching condition (6.22) indeed holds true. In view of the previous
expression forM(1)(z), it is equivalent to show that the quotientss−1

n (z)N21(z)/N12(z),
s−1
n (z)N11(z)/N22(z), and their inverses, are all of orderO (n(1−�)/2) uniformly forz ∈ �1

asn becomes large. Let us look at the first expressions−1
n (z)N21(z)/N12(z). Making use

of relations (6.2)–(6.5), we are lead to study the order of the quotient

ŝn(−2)̃sn(−2)̂sn(1/�P (z))̃sn(−4�Q(z))

sn(z)
= s2

n(−2)sn

( −z√
1 + z2

)
×

(
1 + O

(
log2 n

n

))
, (6.25)

where, in the last equality, we have successively used the relations (2.38),−4�P (z)�Q(z) =
1, (6.19), (6.18), (6.17), and the explicit expressions (2.11) for�P and�Q. We have|z −
z1| = 
n which, by hypothesis, is of order�−2

n . Then,| − z/
√

1 + z2|� 1
2
1/2

n

for n large.
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Applying the first estimate in (6.20), we deduce that, asn → ∞,

sn

( −z√
1 + z2

)
= O

(
n(1−�)
1/2

n

)
= O (1), (6.26)

uniformly for |z − z1| = 
n. Sinces2
n(−2) = O (n(1−�)/2), we get in view of (6.25) and

(6.26) thats−1
n (z)N21(z)/N12(z) is of orderO (n(1−�)/2). The three others expressions may

be handled in the same way. The matching condition (6.22) is proved.

From (6.24) it is easy to see thatE(1) is analytic in�1 \ �P . On�P , bothN and(f1)
1
4

have a jump.N has the jump (6.1) and(f1)
1
4 satisfies(f1)

1
4+ = −i (f1)

1
4−. Straightforward

calculations then show thatE(1)
+ = E

(1)
− on �P , so thatE(1) is analytic across�P . From

(6.24) and the fact that the entries ofNhave at most fourth root singularities atz1, see (6.13),
we see that the entries ofE(1) have at most a square root singularity atz1. SinceE(1) is
analytic in�1 \ {z1}, the singularity atz1 is removable, and this proves thatE(1) is analytic
in the full �1. This completes the description of the parametrixM(1) in the neighborhood
�1 of z1.The expression (6.23) of the parametriceM(1) will be used when computing the
asymptotics stated in Theorem2.13and Corollary2.14.

In a similar way, we can construct a parametriceM(2) near the other branch pointz2.

6.3. Third transformation

We now introduce the final matrix

S(z) =
{
T (z) (N(z))−1 , z outside�1 and�2,

T (z)
(
M(j)(z)

)−1
, z inside�1 or �2,

(6.27)

where the contours�1 and�2 (which depend onn if � < 1) were defined in the previous
section. Inside�1 or�2 the matricesTandM(j) have the same jumps, henceShas no jumps
inside�j , j = 1,2. Outside�1 and�2 the matricesT andN have the same jump matrices
on�P . HenceShas no jump on�P . This means thatSsolves a Riemann–Hilbert problem
on the system of curves shown in Fig.7.
S is analytic outside the above system of contours and it is normalized at infinity

S(z) = I + O
(

1

z

)
, z → ∞. (6.28)

Theorem 6.4. The matrixS(z) has the behavior

S(z) = I + O
(

1

n(�+1)/2

)
, n → ∞, (6.29)

uniformly onC \ �S , where�S are the contours in Fig.7.

Proof.The jumps on all of the contours are uniformly of the formI + O (e−cn) with some
fixed c > 0, except for the jumps on the circles�j where we have

S+(z) = S−(z)M(j)(z)N−1(z), z ∈ �j .
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Fig. 7. Contours of the RHP forS.

Because of the matching condition we have

M(j)(z)N−1(z) = I + O
(

1

n(�+1)/2

)
uniformly for z ∈ �j . HenceS(z) solves a Riemann–Hilbert problem, normalized at∞
with jumps close to the identity matrix up toO (1/n(�+1)/2), uniformly on the contours
�S . We can then use arguments as those leading to Theorem 7.171 in[10] to obtain (6.29).
We can also use Theorem 3.1 of[22], whose elementary complex analysis proof is due
to Aptekarev[1]. Note that, in our situation, the contour�S is not simple and also varies
(slowly) withn. One checks that the proof of[22, Theorem 3.1]can be adapted to the present
case.

7. Proofs of the asymptotic formulas

We now know the asymptotic behavior (6.29) of Sasn ∈ � andn → ∞. We will trace
back our steps to the original Riemann–Hilbert problem forY to obtain asymptotics for the
scaled polynomials in the rational interpolation to the exponential function.

7.1. Proofs of Theorems2.10,2.1, and Corollary2.11

Proof of Theorem 2.10when n ∈ �. We recall that� denotes the set of normal indices
with respect to the schemeB, namely the indicesn such that degQn = n, see (5.1). We



F. Wielonsky / Journal of Approximation Theory 131 (2004) 100–148 137

start with the proof of the asymptotic formula (2.23) forPn. Let K be a compact subset of
C \ �P . We have the freedom to take the contours�P− , �P+ near�P , and the circles�1
and�2 aroundz1 andz2 in such a way thatK is in the exterior of these curves. Letz ∈ K.
Then we follow the transformationsY �→ U �→ T �→ S. We see first from (5.4) that

Pn(z) = Y21(z) = U21(z)e
−2(n+1)"e(n+1)gP (z).

Then from the definition ofT in (5.12) and (5.13), we get thatU21(z) = T21(z). We finally
note thatT (z) = S(z)N(z), sincez is outside�1 and�2. For T21(z), we get

T21(z) = S21(z)N11(z) + S22(z)N21(z).

SinceS = I + O (
1/n(�+1)/2

)
, we get

Pn(z)= e−2(n+1)"e(n+1)gP (z)
(
N21(z) + N21(z)O

(
1

n(�+1)/2

)
+N11(z)O

(
1

n(�+1)/2

))
uniformly onK. From the expressions (6.2)–(6.4) and relations (2.38), we see that, locally
uniformly, N11(z) is of the same order ass−2

n (−2)N21(z) which, in view of (6.18) and
(6.20) applied withz = 2, leads to

N11(z) = N21(z)O
(
n(1−�)/2

)
. (7.1)

Hence

Pn(z) = N21(z)e
−2(n+1)"e(n+1)gP (z)

(
1 + O

(
1

n�

))
uniformly on K. Now we use the formula in (6.16) forN21, the relations (2.38), and we
recall that" = −�i/2, to obtain (2.23).

ForQn we proceed differently, because of the wayQn appears in the entries ofY. We
takez0 ∈ C \ �Q, and show that there is a neighborhood� of z0 such that (2.24) holds
uniformly for z ∈ �. First we assume thatz0 belongs to the outside regionC \ D0. Then
we can take the original contour� so that a neighborhood� of z0 is in the outside region.
Then forz ∈ �, we have by (5.2)

Qn(z) = �n(z)Y22(z) = U22(z)�n(z)e
−(n+1)gP (z).

We can open the contour around�P so that� is in the exterior region to this contour.
Then we haveU = T = SN = (

I + O (
1/n(�+1)/2

))
N , so thatU22(z) = N22(z) +

N22(z)O
(
1/n(�+1)/2

) +N12(z)O
(
1/n(�+1)/2

)
. In the same manner we proved (7.1), we

can show that, locally uniformly,

N12(z) = N22(z)O (n(1−�)/2). (7.2)

Hence,U22(z) = N22(z)
(
1 + O (

1/n�)) uniformly for z ∈ �. This leads to the second
formula in (2.24), if we use the formula forN22 in (6.16), the relations (2.38), the fact that
−4�P (z)�Q(z) = 1 and relation (6.19).

If z0 ∈ D0, then we can also open up the lenses around�P so that a neighborhood� of
z0 is not contained in these lenses. Then we have forz ∈ �, by (5.3)

Qn(z) = e−nzEn(z) − Pn(z)e
−2nz
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and we need to find out, what is the dominant contribution asn gets large. We already have
the asymptotic formula forPn, from which it follows that

1

n
log |Pn(z)e−2nz| → Re(gP (z) − 2z), (7.3)

ForEn it is easy to obtain in a similar way

1

n
log |En(z)e

−nz| → Re(2 log z − gP (z)). (7.4)

Now it turns out that forz ∈ D0 the termPn(z)e
−2nz dominates. Indeed, we have by (4.6)

Re(2gP (z) − 2z − 2 log z) = −2 Re(�P (z))

and we know that the real part of�P is negative inD0. In view of (7.3) and (7.4) we then
obtain the formula forQn

Qn(z) = −Pn(z)e
−2nz

(
1 + O

(
1

n

))
uniformly for z ∈ �, and from what we already know aboutPn, we get the first line in
formula (2.24).

We finally have to consider the case thatz0 is on�P (but not one of the branch points).
After opening up lenses around�P we have the contour�P− to the left ofz0, and the
contour�P+ to the right. We can take a neighborhood� of z0 that is strictly contained in
the domain bounded by�P− and�P+ . Then forz ∈ � ∩ D∞,P , we have

Qn(z) = �n(z)Y22(z) = U22(z)�n(z)e
−(n+1)gP (z)

andU(z) = T (z)V −1
P− (z). Now we haveU22(z) = T22(z), since the second column ofVP−

is simply
(
0 1

)T . We open the circles�1 and�2 aroundz1 andz2 so that� is in the exterior.
ThenT = SN = (I + O (1/n(�+1)/2))N , and so

Qn(z)= �n(z)e
−(n+1)gP (z)

(
N22(z) + N22(z)O

(
1/n(�+1)/2

)
+N12(z)O

(
1/n(�+1)/2

))
uniformly for z ∈ � ∩D∞,P . Using the estimate (7.2), the formula (6.16) forN22, and the
relations (2.38), we then find the second formula in (2.24).

For z ∈ � ∩ D0, we have

Qn(z)= e−nzEn(z) − Pn(z)e
−2nz

= �n(z)Y22(z) − e−2nzY21(z)

= �n(z)e
−(n+1)gP (z)U22(z) − e−2nze(n+1)(gP (z)−2")U21(z).

Now we have that
U(z) = T (z)VP+(z),

with VP+ given by (5.14). Then

Qn(z)= �n(z)e
−(n+1)gP (z)T22(z)

− e−2nze(n+1)(gP (z)−2")
[
T21(z) + T22(z)(z

−1e−2ze2(n+1)�P (z)sn(z))
]
.



F. Wielonsky / Journal of Approximation Theory 131 (2004) 100–148 139

The factor multiplyingT22(z) is exactly zero. This follows from (4.6). Thus only the second
term remains. This gives

Qn(z)= −e(n+1)(gP (z)−2")e−2nzT21(z)

= −e(n+1)(gP (z)−2")e−2nz
(
N21(z) + N21(z)O

(
1/n(�+1)/2

)
+ N11(z)O

(
1/n(�+1)/2

))
,

uniformly for z ∈ �∩D0. Using the uniform estimate (7.1), the expression forN21, and the
relations (2.38), we get the asymptotic formula forz ∈ �∩D0. Note that, by (4.7), the limit
of the first formula in (2.24) on the +side of�P agree with the limit of the second formula
on the−side of�P . Hence, both asymptotic formulas in (2.24) extend to�P \ {z1, z2}.

ForEn we takez0 ∈ C \ �E , and show that there is a neighborhood� of z0 such that
(2.25) holds uniformly forz ∈ �. First we assume thatz0 belongs to the inside regionD0.
Then forz ∈ �, we have by (5.3) and (5.4)

En(z) = �n(z)e
nzY22(z) = U22(z)�n(z)e

nze−(n+1)gP (z).

We can open the contour around�P so that� is in the exterior region to this contour.
Then we haveU = T = SN = (

I + O (
1/n(�+1)/2

))
N , so thatU22(z) = N22(z) +

N22(z)O
(
1/n(�+1)/2

) + N12(z)O
(
1/n(�+1)/2

)
uniformly for z ∈ �. Using the estimate

(7.2), the formula forN22(z) in (6.16), the relations (2.38) and (6.19), we obtain the second
formula in (2.25) forz ∈ D0.

If z0 ∈ D∞,P , then we can also open up the lens around�P so that a neighborhood� of
z0 is not contained in this lens. Then we have forz ∈ �, by (1.3)

En(z) = Pn(z)e
−nz + Qn(z)e

nz (7.5)

and we need to find out, what is the dominant contribution asn gets large. We already have
asymptotic formulas forPn andQn, from which it follows that

1

n
log |Pn(z)e−nz| → Re(gP (z) − z), (7.6)

1

n
log |Qn(z)e

nz| → Re(−gP (z) + 2 log(z)+ z). (7.7)

Now it turns out that forz ∈ D∞,P the termPn(z)e
−nz dominates. Indeed, as before, we

have by (4.6)
Re(2gP (z) − 2z − 2 log(z))= −2 Re(�P (z))

and we know, by Lemma2.9that the real part of�P is negative inD∞,P . In view of (7.6)
and (7.7) we then obtain the formula forEn

En(z) = Pn(z)e
−nz

(
1 + O

(
1

n

))
uniformly for z ∈ �, and from what we already know aboutPn,

En(z) = − (−1)n+1
√

2sn(1/�P (z))e
n(gP (z)−z)

sn(2)
√

4�2
P + 1

(
1 + O

(
1

n�

))
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uniformly forz ∈ �. This is the first line in formula (2.25). The proof for the casez0 ∈ D∞,Q

is similar. It uses the fact that the dominant term in (7.5) forz ∈ D∞,Q isQn(z)e
nz.Actually,

it is simply an analytic continuation of the formula already obtained in the domainD0. This
completes the proof of Theorem2.10whenn ∈ �.

Proof of Theorem 2.1.Since different schemes of points enter the proof, we will keep track
of these schemes by using a superscript. Hence, we introduce the notationPB

n ,QB
n ,EB

n and
�B
n to specify that the interpolants are taken with respect to the schemeB. The scheme−B

consists of the negatives of the points ofB. We first need a preliminary result. We claim that
for all normal indicesn ∈ �, large enough, we have degPB

n = n. Indeed, the formula (2.23)
of Theorem2.10allows one to apply Rouché’s theorem on a circleC(0, R) containing the
curve�P , showing that, forn large, the difference between the number of poles and zeros
of PB

n outsideC(0, R) is equal to the same difference for the function given by the ratio in
the right-hand side of (2.23). This ratio has no zero outsideC(0, R) but has a pole of order
n at infinity, sincegP (z) = logz+ O (1/z) asz → ∞. Hence, since degPB

n �n, the same
conclusion holds forPB

n , namelyPB
n has no zero outsideC(0, R) but has a pole of ordern

at infinity. In particular, forn large,PB
n is of exact degreen. This proves the claim.

Now, we proceed by contradiction, assuming that the assertion of Theorem2.1 is false,
namely there exists an infinite sequenceV of indicesn with

degpB
n < n or degqBn < n,

or equivalently
degPB

n < n or degQB
n < n.

Assume that the pair(PB
n (z),Q

B
n (z)) is minimal among all solutions of the interpolation

problem of type(n, n), in the sense that the fractionPB
n /Q

B
n is irreducible. We set

degPB
n = n − 	, degQB

n = n − �,

with 	 > 0 or � > 0. First, assume��	. By the previous claim, forn large, the case
� = 0 is impossible. Moreover, the pair(PB

n (z),Q
B
n (z)) solves the rational interpolation

problem of type(n− �, n− �) associated to any subsetC(2n−2�) of 2n− 2� + 1 points of
B(2n). Second, assume� > 	. Then, considering the scheme−B instead of the schemeB,
and changingz into −z in relation (1.3), the previous claim again shows, that forn large,
the case	 = 0 is impossible. Moreover, the pair(QB

n (−z), PB
n (−z)) solves the rational

interpolation problem of type(n−	, n−	) associated to any subsetC(2n−2	) of 2n−2	+1
points of−B(2n). In both cases, the degreesn − � or n − 	 are normal with respect to the
sets of pointsC(2n−2�) orC(2n−2	). Note also that the corresponding error functionEB

n has
2n+1 > 2n−2�+1 (resp. 2n+1 > 2n−2	+1) zeros in some given diskD(0, �), � > 0,
around the origin. For each indexn ∈ V , the setC(2n−2�) orC(2n−2	), according to��	 or
� > 	, is a row of a new schemeC := C(2l), l = ln, n ∈ V . Note thatln → ∞ asn → ∞.
Indeed, it is well known that an exponential polynomialQ(z)ez + P(z) has no more than
2 degP + 2 degQ + c zeros in a given compact setK of C wherec is a constant which
depends only onK , see e.g.[43]. By construction, each indexln is normal with respect
to the schemeC. Hence, the asymptotic formulas in Theorem2.10applies. In particular,
(2.25) implies that, forl large enough,EC

l (z) = EB
n (z) has exactly 2l + 1 zeros in the disk
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D(0, �), namely the zeros of�C
l (z). This contradicts the fact thatEB

n has 2n+ 1 > 2l + 1
zeros inD(0, �), and the proof of Theorem2.1 is completed.

Completion of the proof of Theorem2.10.We just proved that for any triangular scheme
B := B(2n), n = n	, of points lying in a given compact set ofC, all indicesn, large enough,
are normal with respect to rational interpolation to the exponential function. Hence,Theorem
2.10is actually valid for any sequence of indicesn ∈ N.

Proof of Corollary 2.11.It is straightforward from the relation (1.3) and the fact that the
polynomialQB

n is monic that the following symmetry relation holds:

Q−B
n (z) = PB

n (−z)

(−1)n�Bn
.

Hence�Bn = (−1)nPB
n (0)/Q

−B
n (0), and (2.27) follows from evaluating (2.23) and the first

equality in (2.24) at z= 0. We also use withz = 2 the fact that forn large,

s−B
n (z) = 1

sBn (z)

(
1 + O

(
�2
n

n

))
, z ∈ C \ {0}.

Hence, in view of (2.1), we have that

s−B
n (2) = 1

sBn (2)

(
1 + O

(
log2 n

n

))
, if 0 < � < 1

and

s−B
n (2) = 1

sBn (2)

(
1 + O

(
1

n

))
, if � = 1.

7.2. Proofs of Theorems2.12,2.13, and Corollary2.14

Proof of Theorem 2.12.We will not give details of the proof since the asymptotic formulas
for Qn andEn can be obtained as in Theorem 2.9 of[27]. The asymptotic formula forPn
is derived as in Theorem 2.10 of[27] where we now use the fact thatN11/N21(z) and
N12/N22(z) are locally uniformly of orderO (n(1−�)/2) asn → ∞, see (7.1) and (7.2).

Proof of Theorem 2.13.If we unravel all the transformations forz ∈ �1, we find thatY (z)
is a product of matrices, the exact number of which depends on the region wherezis, namely
f−1(I ), f−1(II ), f−1(III ), or f−1(IV ), see Fig.6. Considering the(2, 1)entry ofY (z),
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we get after some calculations independent from the considered region, that forz ∈ �1,

(−1)n+1Pn(z)

= √
�e(n+1)(gP (z)+�P (z))

×
[

2∑
k=1

S2k(z)
(
Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
(n + 1)1/6f1(z)

1/4

×Ai ((n + 1)2/3f1(z)) +
2∑

k=1

S2k(z)
(
−Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
× (n + 1)−1/6f1(z)

−1/4Ai ′((n + 1)2/3f1(z))
]
. (7.8)

From the jump condition (6.1) forN on�P it easily follows that for eachk,(
Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
+

= i
(
Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
− , z ∈ �P .

The fourth root inf1(z)
1/4 is defined with a cut along�P , and on�P there is a jump(
f1(z)

1/4
)

+ = −i
(
f1(z)

1/4
)

− , z ∈ �P .

Thus the products (
Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
f1(z)

1/4

are analytic across�P . Similarly, we have that the products(
−Nk1(z) + iz−1e−2zsn(z)Nk2(z)

)
f1(z)

−1/4

are analytic across�P .
Now we recall thatS(z) = I + O (

1/n(�+1)/2
)
. Consequently, (7.8) can be rewritten in

�1 as

(−1)n+1Pn(z)= √
�e(n+1)(gP (z)+�P (z))

[
n1/6f1(z)

1/4Ai ((n + 1)2/3f1(z))

×
(
(N21(z) + iz−1e−2zsn(z)N22(z))

(
1 + O

(
1/n(�+1)/2

))
+

(
N11(z) + iz−1e−2zsn(z)N12(z)

)
O

(
1/n(�+1)/2

))
+ n−1/6f1(z)

−1/4Ai ′((n + 1)2/3f1(z))

×
(
(−N21(z) + iz−1e−2zsn(z)N22(z))

(
1 + O

(
1/n(�+1)/2

))
+

(
−N11(z) + iz−1e−2zsn(z)N12(z)

)
O

(
1/n(�+1)/2

))]
. (7.9)
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By use of (7.1) and (7.2), the previous expression reduces to

(−1)n+1Pn(z)= √
�e(n+1)(gP (z)+�P (z))

[
n1/6f1(z)

1/4Ai ((n + 1)2/3f1(z))

×(N21(z) + iz−1e−2zsn(z)N22(z))

(
1 + O

(
1

n�

))
+ n−1/6f1(z)

−1/4Ai ′((n + 1)2/3f1(z))(−N21(z)

+ iz−1e−2zsn(z)N22(z))

(
1 + O

(
1

n�

))]
.

This proves the asymptotic formula forPn nearz1. The asymptotic formulas forQn andEn

are obtained in the same way.

Before proving Corollary2.14, the following lemma is needed.

Lemma 7.1. Let 
n > 0 be a sequence of real numbers such that
n = o(1/ log2 n) as
n → ∞. The functionh1 (which depends on n)has no zeros in|z − z1| < 
n asn → ∞.
Moreover,the functionsh1 andh2 satisfy,asn → ∞,

h2(z)/h1(z) = O (logn), if � < 1, (7.10)

and
h2(z)/h1(z) = O (1), if � = 1, (7.11)

uniformly in|z−z1| < 
n. Similar property and estimates hold near the other branch point
z2.

Proof. In view of the definitions of the functionsh1 andh2 in Theorem2.13, along with
the expressions (6.16) of N21 andN22, the quotienth2(z)/h1(z) is equal to the quotient of
the two following expressions− ŝn(1/�P (z))e

−gP (z)√
4�2

P (z) + 1
+ i

sn(z)e
gP (z)−2z−2 logz

s̃n(−4�Q(z))

√
4�2

Q(z) + 1

 f1(z)
1/4

and  ŝn(1/�P (z))e
−gP (z)√

4�2
P (z) + 1

+ i
sn(z)e

gP (z)−2z−2 logz

s̃n(−4�Q(z))

√
4�2

Q(z) + 1

 f1(z)
−1/4.

Now, sincef1 is analytic with a simple zero atz1, f1(z)/(z − z1) is locally bounded near
z1. Factorizinge−gP (z), making use of relations (4.5) and (4.6), and finally multiplying both
expressions with

s̃n(−4�Q(z))

√
4�2

P (z) + 1
/
sn(z)(z − z1)

1/4 , (7.12)

we may equivalently compare

− ŝn(1/�P (z))̃sn(−4�Q(z))

sn(z)
− ie−2�P (z)

√√√√4�2
P (z) + 1

4�2
Q(z) + 1

(7.13)
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and  ŝn(1/�P (z))̃sn(−4�Q(z))

sn(z)
− ie−2�P (z)

√√√√4�2
P (z) + 1

4�2
Q(z) + 1

 (z − z1)
−1/2. (7.14)

First, for |z − z1| < 
n, we show that the modulus of the expression (7.13) admit an
uniform lower bound independent ofn. Since (7.12) has no poles in a given neighborhood
of z1, it will in particular imply thath1 has no zeros in|z − z1| < 
n.

From (6.25), where we have taken out the factorsŝn(−2)̃sn(−2) on the left ands2
n(−2)

on the right, we know that the first term in (7.13) can be written as

− ŝn(1/�P (z))̃sn(−4�Q(z))

sn(z)
= −sn

( −z√
1 + z2

)(
1 + O

(
log2 n

n

))
. (7.15)

Let z − z1 = h, |h| < 
n. Then,| − z/
√

1 + z2|� 1
2|h|1/2 for n large. Applying inequality

(6.21), we deduce that, asn → ∞,

sn

( −z√
1 + z2

)
= 1 + O

(
|h|1/2�n

)
= 1 + o(1), (7.16)

uniformly in |z−z1| < 
n, where in the last equality, we have used (2.1) and the assumption
that
n = o(1/ log2 n). Since the second term in (7.13) tends to−1 as ztends toz1, the
expression in (7.13) tends to−2 and is thus bounded below, forn large.

Second, we show that the modulus of the expression (7.14) is dominated by logn (if
� < 1) or 1 (if � = 1), asn → ∞. This will imply (7.10) and (7.11). Considering
expansions with respect toh1/2 of �P , �Q, and�P nearz1, it is readily seen that

ie−2�P (z)

√√√√4�2
P (z) + 1

4�2
Q(z) + 1

= 1 + O (h1/2), h → 0,

while considering expansions with respect toh1/2 of ŝn(1/�P (z)), s̃n(−4�Q(z)) and
sn(z) nearz1, it can be checked that

ŝn(1/�P (z))̃sn(−4�Q(z))

sn(z)
= 1 + O (h1/2), h → 0,

wherethe lastO -term depends on n. In view of (7.15) and the first equality in (7.16), we
finally get that, asn → ∞, the expression (7.14) is of orderO (logn) if � < 1 andO (1)
if � = 1, uniformly in |z − z1| < 
n, which finishes the proof of the lemma.

Proof of Corollary 2.14.The proof follows that of Corollary 2.12 of[27]. The behavior of
the extreme zeros ofPn nearz1 is a consequence of the asymptotic formula (2.39). Indeed,
we consider the function

Fn(t) = (−2)n+1e−(n+1)(gP (z)+�P (z))√
�n1/6h1(z)

Pn(z), wherez = z1 + tn−2/3.

ThenFn has zerost	,n = (zP	,n − z1)n
2/3, 	 = 1,2, . . ., and these zeros are ordered by

increasing absolute value. Becausen−2/3 = o(log−2 n), n large, the asymptotic formula
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(2.39) applies, showing that

Fn(t)= Ai
(
(n + 1)2/3f1(z1 + tn−2/3)

)(
1 + O

(
1

n�

))
+ n−1/3h2(z1 + tn−2/3)

h1(z1 + tn−2/3)
Ai ′

(
(n + 1)2/3f1(z1 + tn−2/3)

)
×

(
1 + O

(
1

n�

))
. (7.17)

Sincef1 is an analytic function with a simple zero atz1 andf ′
1(z1) = c1 (see (2.35), (2.36)),

we get by expanding the functionf1 nearz1, and making use of (7.10) and (7.11), that

Fn(t)= Ai
(
tc1 + O

(
n−2/3

))
+ n−1/3h2(z1 + tn−2/3)

h1(z1 + tn−2/3)
Ai ′

(
tc1 + O

(
n−2/3

))
+ O

(
1

n�

)
. (7.18)

Expanding the Airy function Ai neartc1, and observing, thanks again to (7.10) and (7.11),
that the second term of the sum in the right-hand side of (7.18) is of ordern−1/3 logn if
0 < � < 1 andn−1/3 if � = 1, we get

Fn(t) = Ai (tc1) + O
(
n2/3
(n)

)
, (7.19)

where
(n) has been defined in (2.42). TheO -term holds uniformly on compact subsets of
the complext-plane. From Hurwitz’ theorem it follows that for every fixed	 ∈ N, we have

lim
n→∞ t	,n = − �	

c1
.

Using the fact that−�	 is a simple zero of the Airy function, we obtain from (7.19) that

t	,n = − �	
c1

+ O
(
n2/3
(n)

)
.

This proves (2.43), sincezP	,n = z1 + t	,nn
−2/3.

The formulas (2.44) and (2.45) for the extreme zeros ofQn andEn nearz1 are obtained
in a similar way from the asymptotics ofQn andEn nearz1, as given in Theorem2.13.

7.3. Proofs of Theorems2.7and2.2

Proof of Theorem 2.7.The limits for the counting measures	Pn and	Qn follow from the
strong asymptotic formulas (2.23) and (2.24), and the fact that, in view of (6.20), the family
of functions(sn)n satisfies

1

n
log sn(z) → 0, n → 0,

locally uniformly inC\{0}, in particular in a neighborhood of�P and�Q. The proof using
the unicity theorem for logarithmic potentials (see e.g.[35, Theorem II.2.1]) essentially
repeats the proof of[39, Theorem 2.1].
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The proof for the limit of the measures	En is more difficult, since these measures have
unbounded support and infinite mass. It can be adapted with minor changes from the proof
of the similar statement about the measures	En in Theorem 2.5 of[27]. For the sake of
completeness, we notice a difference when estimating an upper bound for the numberNn(r)

of roots of
fn(z) = En(z)/�n(z) (7.20)

with absolute value�r, see inequality (7.11) of[27]. We still start with the classical
inequality in the theory of entire functions,

Nn(r) < log max|z|=er
|fn(z)| − log |fn(0)|, (7.21)

see[28, Section 2.5]. The second line in (2.25) implies that

fn(0) = e−ngP (0)

sn(2)
√

2

(
1 + O

(
1

n�

))
. (7.22)

UsingEn(z) = Pn(z)e
−nz + Qn(z)e

nz and the fact that the polynomialsPn andQn, of
leading coefficientss−2

n (2)(1 + O (1/n�)) (see Corollary2.11) and 1, respectively, have
their zeros in a compact set, independently ofn, we easily get that|En(z)|�e2n|z| for every
n ∈ N and for every|z|�R with R sufficiently large, sayR�R0�1. Then, from (7.21),
(7.20) and (7.22) we see that there exists a constantC > 0 so thatNn(r) < Cnr if r > R0.
The rest of the proof is similar to that of Theorem 2.5 of[27].

Proof of Theorem 2.2.Assertion (i) is a consequence of the strong asymptotics of the
scaled rational interpolants in Theorem2.10. In order to prove assertions (ii) and (iii), we
use (2.11) and (4.4), and get the following expansions asz → 0,

�P (z) = − z

4
+ O (z3),

�Q(z) = 1

z
+ O (z),

gP (z) = (log(2) − 1)+ z − z2

4
+ O (z3).

Making use of these expansions, the asymptotic formulas (2.23), (2.24) and (2.25), and
pluggingz/2n instead ofz, it is straightforward to check that (2.3) and (2.4) hold true.
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