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Abstract

We study the asymptotic behavior of the polynomfatndq of degrees, rational interpolants to
the exponential function, defined Wz)e*Z/Z + q(z)ez/2 =0 (02,+1(z)), as zends to the roots of
w2,+1, @ complex polynomial of degree 2- 1. The roots ofvy, 1 may grow to infinity withn, but
their modulus should remain uniformly boundeddlog(n),c <1/2, asn — oo. We follow an ap-
proach similar to the one in a recent work with Arno Kuijlaars and Walter Van Assche on Hermite—Padé
approximants te<. The polynomialg andq are characterized by a Riemann—Hilbert problem for a
2 x 2 matrix valued function. The Deift-Zhou steepest descent method for Riemann—Hilbert problems
is used to obtain strong uniform asymptotics for the scaled polynomi@s;) andg (2nz) in every
domain in the complex plane. From these asymptotics, we deduce uniform convergence of general
rational interpolants to the exponential function and a precise estimate on the error function. This
extends previous results on rational interpolants to the exponential function known so far for real
interpolation points and some cases of complex conjugate interpolation points.
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1. Introduction

Let B := B2 = {z; (r1-+n2) }115"2, be a triangular sequence of complex interpolation
points. We define the ratlonal interpolants of type, n2) to e such that

Prrns (D) F Gnny (D)€ = O (Onyynp1(2), 7 — 22,

i=0,...,n1+no, (1.2)

where
ni+np

wn1+nz+l(z) = l_[ (Z - Zl(”l_'_nZ))
i=0
and dew,, <n1, degg,, <n2. The polynomialsp,, ,, andg,, ., exist. Indeed, relation
(1.1) is equivalentto a systemmf+no+1 linear homogeneous equations forthe-no+2
unknown coefficients in the two polynomiglg, ., andg,, »,. Hence a non trivial solution
with gy, », # O always exists. We put

enl,nz(z) = pnl,nz(z)e_z/z + f]nl,nz(Z)ez/z,

so that
enl,nz(Z) =0 (wn1+n2+l(z))~

Note that when all the interpolation poirnfg”””

the usual Padé approximant of typa, n,) to e=.

In this paper, we will stick to the diagonal case, hg.= n> = n, and we will simply
write p, andg, for p,, andg,_ ,, respectively. It is not difficult to check that the rational
function p, /¢, associated to a paip,, g,) solving an equation of the type (1.1), whefe
can be replaced by any functiédefined in a subset @ where interpolation takes place,
is always unique. On the contrary, the pdips, g,) are in general not unique, even when
normalized by some multiplicative constant.

We will be interested in the asymptotic behavior of the rational interpolgptand
g». Throughout, we will assume that the (complex) interpolation point8 @ have a
maximum modulus which grows at most likéogn, wherec < 1/2 is some given positive
constant. It will be a consequence of our analysis that farge, the solution of typé:, n)
to (1.1) satisfies

are chosento be equal to zero, we recover

degp, =n, degq, =n.

In particular, fom large, a solution normalized so thgtis monic will be unique.
The main task of the paper will be the study of the asymptotics of the scaled diagonal
polynomials

Py (2) = pa(2nz), 01(2) = gn(2nz) (1.2)
and of the remainder term
En(2) = Py(2)e™" 4 Qn(2)e"™ = O (2,(2)), (1.3

where
Q,(2) = (2n) "2 Loz, 11(2n2).
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Fig. 1. Zeros of the diagonal Padé polynomip&, (the boxes on the left) anggo (the circles on the right).

We will always choose the normalization in (1.3) so t@gtis a monic polynomial. From
these asymptotics, the limit distributions of the zeropf Q,,, and E,, will follow. The
zeros of P, andQ,, accumulate on two specific arcs in the complex plane, symmetric with
respect to the imaginary axis, while the zerosFgfaccumulate on two segments, on the
imaginary axis itself. To illustrate, the zeros of the usual Padé approximﬁntﬁl’ have
been plotted for the value = 60 in Fig.1. The picture shows their particular distributions,
first observed and studied by Saff and Varg§3i].

We will prove that the zeros of the scaled rational interpol@tand Q,, and the zeros of
the scaled Padé approximam,% and Q,? share the same asymptotic distribution. In other
words, the geometry which underlies the limiting behavior of the zeros remains unchanged
when considering general rational interpolants instead of plain Padé approximants.

The Padé approximants (and more generally simultaneous Padé approximants) to the
exponential function were first studied by Herm[i®] in connection with his proof of
the transcendance @& Then, Padé, a student of Hermite, proved their convergence to

e*, uniformly in the complex plane, by making use of the explicit formulas, originally
determined by Hermite,

ni . i np . i

0 (n1+n2 — j)nglz/ 0 (n1+n2 — jHnal(—z)’
P =) NIANCEDS
j=0 j=0

(n1+n2)!jl(ny — j)! (n1+n2)!jlnz — !’

see[30-32]and[33, Section 75]. He obtained in this way a very nice, but rare, property
of these approximants, since uniform convergence of the Padé approximants is known to
happen only for a very few classes of functions in the complex plane.

Rational interpolation or equivalently, multipoint Padé approximation is an old sub-
ject whose study goes back at least to Cauchy and Jacold .28 Usually, the theory
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is divided into two parts, on one hand, an algebraic part concerned with recurrence re-
lations, determinantal identities and algorithms for computations, and on another hand,
an analytic part concerned with convergence aspects. The theorem of uniform conver-
gence derived in this paper for the exponential function relates to the second part. It is
of the same nature as the generalization that was obtaingtBjrfor multipoint Padé
approximants to Markov functions. Note that contrary to the hypothesis mafeijn

no symmetry assumption is made on the set of interpolation points. In connection with
the problem of the limiting distribution of zeros, the present results may also be seen
as closely related to the study initiated by Szeg42] concerning the distribution of

the zeros of Taylor sections of the series &r subsequently generalized by Saff and
Varga in[36—38] to the zeros of the Padé approximantsefo(see alsq16,44]), and

more recently by Stahl i[89,40]to the zeros of the quadratic Hermite—Padé approximants
to e*.

It may come as a surprise that Padé’s result for the exponential function was not general-
ized to more general scheme of interpolation points in the complex plane until recently. It
was only in[6] that this property was obtained for uniformly bounded sets of interpolation
points on the real axis. There, the main ingredients were Rolle’s theorem and results from
the geometry of polynomials. Subsequently, the same property was also proved for some
cases of conjugate interpolation points in a given compact s€t essentially by using
an analog of Rolle’s theorem for real exponential polynomials in the complex plane, see
[45]. Nevertheless, to handle the case of complex interpolation points in full generality, it

seemed necessary to introduce some new idea.
We follow an approach similar to the one usef#if] for studying quadratic Hermite—Padé

approximants te*. The asymptotic analysis is based on a Riemann—Hilbert formulation for
the polynomials?, andQ,,, combined with a steepest descent analysis for Riemann—Hilbert
problems. This technique originated with Deift and ZHt&] and is currently applied to
problems in such many different areas as integrable systefisrandom matrix theory
[11,12], combinatoricf3] and orthogonal polynomialg,12,13,21]. The booKL0] and the
lecture note§2?2] are excellent introductions to the technique. RE&,24,25]give further
orientation about recent developments.

Note thaf1,2] contain a thorough study of strong asymptotics of orthogonal polynomials
with varying complex weights. Such orthogonal polynomials naturally arise in the context
of rational approximation problems. In this connection, Theorem[2]dE especially rel-
evant here, which shows that strong asymptotics can be derived as soon as the geometry
of the problem (more precisely the support of an equilibrium measure with respect to an
extremal problem in potential theory with external field) is known and satisfies a sym-
metry and a connectedness assumptions. Note also that our asymptotic results concerning
the scaled rational interpolants, when specialized to the Padé case, are not new since the
ponnomiaISp,? andq,(,J agree in this case, up to some multiplicative constant, with the La-

guerre polynomialsl,ﬁ,_z”_l) with negative parameter2n — 1, seg23] where the scaled

ponnomiaIst,_z”_l)(nz) were studied through the formulation of a Riemann—-Hilbert

problem.
Here, the Riemann—Hilbert problem is to find & 2 matrix valued functiory : C\I' —

C?*2 wherel is a closed contour in the complex plane encircling the origin (hence all the
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pointsz\*" /2n for n large) once in the positive direction, such that
1. Yis analyticinC \ T
2. Y satisfies the jump condition

-1 —2nz
Y1 (z) = Y_(2) <é 2 (Zl)e > . zel, (1.4)

whereY, (z) andY_(z) denote the limiting values &f(z’) asz’ approaches e I" from
the inside and outside d@f, respectively.

3. For largez
1 Zn+1 0
Y@)=(1+0 (- 0 1) z=> 00 (1.5)
b4 z

We will show in Section 5.1 that the Riemann—Hilbert problem has a unique solution for
large, and thai22(z) = Q,(z) Q. (z) for zoutsider’, Y22(z) = @, (z)e "2 E,(z) for z
insidel’, andY21(z) = P,(z).

The steepest descent analysis consists of a number of transformations. A crucial role is
played by the Riemann surface defined by

w

(w2 —1/4)’
which is considered as a two sheeted surface with a cut along dfpaithe jumps of the
two inverse mappings of (1.6) across the arc determine a probability megssupported
onI p. This measure turns out to be the limiting distribution of the normalized zero counting
measures of the polynomial3,.

We choose the closed contallin the Riemann—Hilbert problem fafso that it contains
the cutl"p. The measurg, and itsg-transform

= (1.6)

gr(z) = /|OQ(Z—S)de(S)

are used to make the first transformation of the Riemann—Hilbert problem, which has the ef-
fect of normalizing the problem at infinity. Then we follow the general scheme, as presented
in [13] or [10], for the asymptotic analysis of Riemann—Hilbert problems. It leads to a final
Riemann—Hilbert problem whose solution has an explicit asymptotic behavierfero,
see Theoren®.4 in Section 6.3. Tracing our steps back to the original Riemann—Hilbert
problem, we obtain strong asymptotic formulas for the scaled multipoint Padé approximants
in every region of the complex plane. In particular, we obtain asymptotic formulas on the
sets where the zeros are and their endpoints. These last results, though not necessary in
deriving uniform convergence of the rational interpolants, are of independent interest.

In Section 2 we state the normality property of the rational interpolation problefm to
uniform convergence of the polynomialg andg,, and an estimate for the remainder term
en, Which follow readily from the asymptotic results for the scaled polynonttg9,, and
for the remaindel,,. The asymptotic results make use of the functions obtained from the
Riemann surface. The Riemann surface and the measures and functions derived from it are
also described in Section 2. In Section 3 we prove the statements about the Riemann surface
and other geometrical objects involved in the problem. To prepare for the transformations
of the Riemann—Hilbert problem we need relations between the various functions involved,
such as the inverse mappings of (1.6) and the fungtjariThese properties are established
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in Section 4. Sections 5 and 6 contain the transformations of the Riemann—Hilbert problem
and the asserted asymptotic results are proven in Section 7.

The general layout of the paper is similar to thafai]. Actually, the method to derive
the strong asymptotics of the scaled rational interpolants follows closely the one used
in obtaining the strong asymptotics of the quadratic Hermite—Padé approximants to the
exponential function. The analysis here is slightly simpler since we only ne@d®atrices
instead of the 3« 3 matrices that were necessary[27]. At the same time, the analysis
demands at different places special care as we work with rational interpolants, instead of
plain Padé approximants. Some parts of the proofs have not been displayed, especially those
that can be adapted from the corresponding prodf&4h In this respect, it may be helpful
as reading the present paper to have R&f] at hand. Besides, R4R6] gives a very brief
overview of[27].

2. Statement of results

Throughout, the following hypothesis on the schenef interpolation points will be
made.

There exist < a<1andc > 0 such thatfor each nthe points o8 lie in a closed
diskD , centered at the origimf a radiusp,, satisfying the growth condition

1—
Vn>0, p,< (Toc> log n + c. (2.1)

2.1. Normality of the rational interpolation problem

We first state a result which says that, given a sequence of closed@jsihose radius
meets condition (2.1), an exponential polynomialz) + ¢, (z)e* cannot have more than
2n + 1 zeros inD ,, for n large. In the terminology of Padé approximation, wheria))
reduces to the origin, such a property is usually rephrased by saying that the problem under
study is normal. We will keep this terminology here.

Theorem 2.1. Let B := B@) = ()2 be a given triangular sequence of complex
interpolation points satisfying?.1). Then,there exists some integéf > 0 such that for
n > N, the rational interpolanty, andg, of type(n, n) to ¢* satisfying
2n
2
Pn(@) + au(@)e” = O (02211()),  where wz41() =] | (z — 2 ")) . (22
i=0
have full degreesyamely
degp, =n, degg, =n.
In particular, a rational interpolant normalized so thaf, is monic is unique.

Theorem2.1 will be deduced from the strong asymptotics for the scaled rational inter-
polants to be given in Theorehl10.

Remark. Normality does not hold for any degree. Indeed, it suffices to choose the closed
disk centered at the origin, of radiug,2and{—2ir, 0, 2i=} as three interpolation points.
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Then,q,(z) = 1 andp,(z) = —1 solve the corresponding interpolation problem with
degp, < 1land deg, < 1.

2.2. Local uniform convergence of the diagonal rational interpolants

Let us state now the result which is the main goal of our study, that is uniform convergence
inthe complex plane of the rational interpolants to the exponential function. Actually, we will
prove more than that, namely, as in the Padé case, separated convergence of the numerator
and denominator of the interpolants, see (2.3). Moreover, we will also obtain a sharp estimate
for the error functiong?® + r,, (z), see (2.4).

Theorem 2.2. Let B be a scheme of points satisfy{@dl)and letp,, andg, be the rational
interpolants of typ&n, n) to ¢* such that(2.2) holds. Thenthe following three assertions
hold true:
(i) Allthe zeros and poles of = p,/q, tend to infinity,as n becomes largsufficiently
fast so that no poles of, lie in the diskD ,, for n large. Hencedividing the first
equation in(2.2) by g,,, we getr,, as a true rational interpolant te* satisfying

& +rp(2) = O (W2141(2)).
(iiy Asn — oo,
r(z) = =€, pu(z) = =2, gu(z) > e7/? (2.3)

locally uniformly inC, whereg,, is normalized so thaj, (0) = 1.
(iii) for n large,

2n+1 1
4@ = 0 () opna@e <1+O (—)) (2.4)
4n n*

locally uniformly inC.

As TheorenmR.1, Theoren?.2follows easily from the strong asymptotics given in The-
orem2.10.

Remark. Theoren2.2generalizes for the diagonal case results about rational interpolation
of the exponential function that were obtained with real interpolation points and some cases
of complex interpolation points in Theorems 2.1 and 2.p6pfand Theorems 2.1 and 2.3

of [45], respectively.

2.3. The Riemann surface

In order to state our convergence results for the scaled rational interp&aatd Q,,,
we first introduce an appropriate Riemann surface. The starting point for our analysis will
be the explicit integral formulas for the scaled Padé approxima?lvsnd Q?l, which are

Ce 20 gy
2ni f;_l/z (w2 — 1/4n+1’

PO(z) = (2.5)
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Ce™ 2 eanwdw
0
= . 2.6
Qn0) = =5 7%1/2 (w2 — 1/4)"+1 (26)

Here C; is a closed contour in the complex plane encircljrig the positive direction,

which does not encircle the other poinfinl/2, 1/2}. The numbefin (2.5) and (2.6) isa
normalization constant. The Riemann surface is chosen so that it parameterizes the critical
points of the function

w > 27w — log <w2 - 1/4) : 2.7)
Note that the integrals in formulas (2.5) and (2.6) have the form
1 n(2zw—log(w?—1/4))
——e dw 2.8

and that by the classical saddle point analysis for the asymptotic evaluation of integrals, the
main contribution to the integral (2.8) comes from a critical point of (2.7). So we d&fine
as the Riemann surface for the function

1/ 1 1 w
Z=Z(w)z§<w—1/2+w+1/2) T wi_1/4 (2.9)

Note that we obtain (2.9) if we set the derivative of (2.7) equal to zero and soh& for
The rational function (2.9) has two inverse mappings. These are the two solutions of the
quadratic equation

w? —w— % —0. (2.10)
The Riemann surfacR consists of two sheet® p, andR o, see Propositio2.3. The
bijective mappingy : R — C is the inverse of (2.9). We denote its restriction to the two
sheets by) p, andy/, respectively. S# , (z), andy , (z) are the two solutions of (2.10),
given explicitly by

1-vV1+22 1+vV1+22
Vp)=——F— VYol =—7F—, (2.11)

2z 2z
where the square root is chosen to be positive for large pogitiligpically we will identify
the two sheets with copies of the complex plane, angl sandy/ , are defined oi® with
an appropriate cuf p connecting the two branch points

21=1i, z2=-—i,

of the Riemann surface. The she®&sp andR ¢ are glued together along the dip.
The two branch pointg; = z(w1), z2 = z(w2) are related to the pointsz, w» for which
Z' (w) = 0, namely
w1 =—i/2, wr=1i/2. (2.12)

The precise sheet structure®f is given in the following proposition.

Proposition 2.3. There is an analytic curvé'p from z1 to z lying in the left half-plane,

such that the following hold.

(a) Two inverse mappingg » andy, of (2.9) exist so that), andy, are defined and
analyticonC \ I'p.
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Fig. 2.y-image of the Riemann surfade .

(b) Atinfinity,we have the valuggp(oc) = —1/2,andy/ ,(c0) = 1/2.
(c) Forz € I'p, we have

1 Z
o /z1 o —Yp)i(s)ds eR, (2.13)

with integration along thetrside ofI"p. [This is the side of p that is on the left while
going fromzy to zo alongI'p.]

The functions) p, ¥, are defined on the, andQ sheet ofR , respectively. Together
they constitute a conformal map froR onto the Riemann sphere. The images of the two
sheets are shown in Fig.

Other curves of interest to our problem are defined by the propertyz—}glgdg(an —

Y p)(s)ds is real. These curves are described by the following proposition, se8.Fig.

Proposition 2.4. There are four analytic curves Wh% Zzl(po —Yp)(s)dsisreal. One
ofthemisl"p, a second one is the mirrorimage B with respect to the imaginary axis. We
call this curvel . The other two curves are semi—infinite segments lying on the imaginary
axis. They joings andzz with infinity,and we call theni"z 1 andI'g 2, respectively.

All contours are oriented as shown in F&.The orientation induces-gside and a-side
on each contour, where theside is on the left and the side on the right while traversing
the contour according to its orientation. Propositidrand2.4 are proved in Section 3.

We also define the contour

I'e=Tg1UTlEgp. (2.14)
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0.5}

1

Fig. 3. Curves forwhic% fzzl(‘//Q — Y p)(s)dsisreal.

The contourd p, I'p, andI ¢ divide the complex plane into three domains. We denote
the unbounded domains M, p, Do, ¢, as shown in Fig4. The bounded domain is
denoted byDg, see also Figd. Moreover, we put

Dos = (Doo,p U Doo,o U (I'g \ {21, 22))) - (2.15)
This is the unbounded domain boundedity andlp.

2.4. The measurgsp, uy, andug

We now define measures on the curygs I'o, andl g. The complex line elemenlsis
defined according to the orientation of these curves given in&ig.

Definition 2.5. We define a measuye, on I'p and a measurg, onI'g by
1
dup(s) = — (o —V¥p)+(s)ds, selp,
1
dug(s) = - o —¥p)i(=s)ds, selg (2.16)

and a measurg; onI'g by

1
dug(s) = = (lﬂQ —Yp)s)ds, selg1Ulgo. (2.17)
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Fig. 4. Curved p, I'g, I'g, and domaindg, Do, p, Do, -

Theorem 2.6. We have thati, is a probability measure ol p and i, is a probability
measure ofl"p. The measurg, is a positive measure ofig.

Theorem?2.6is proved in Sectiod.1.
The relevance of these measures is shown by the following theorem. For every polynomial
p of exact degreea, we denote by, the normalized zero counting measure. Thus

1
Vp = ; Z 52
p(z)=0

where each zero is counted according to its multiplicity. We also define a zero counting
measure for the remainder functi@h, namely

1
vEn = ; Z 51’
Ep(2)=0
Qn (7)7&0

where the normalization by now corresponds to the degree of approximation and the
2n + 1 interpolatory zeros of,, at the roots of2, have been excluded.

Theorem 2.7. We have

VR, = fp, Vo, = Hg, (2.18)
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where the convergence is in the senseeék’ convergence of measures., u, =5 wif
[ fduw, — [ fduforevery bounded continuous functiorrtirthermore we have

VE, = Hg, (2.19)
in the sense that
n"_)moo /f(s)dVEn(S) = /f(S)d/lE(S)

for every continuous function f such thats) = O (s—2) ass — occ.

In contrast to the measureg, andvy, which are probability measures, the measures
vg, have infinite mass. They also have unbounded support. As a result, the proof of the limit
(2.19) is more involved than that of (2.18). A sketch of the proof of Thedefis given
in Section7.3. For details, the reader is referred to the proof of similar results derived in
Theorem 2.5 of27].

2.5. The g-functiorg p and the functionp p

For the strong asymptotic results we need the log-transform (or complex logarithmic
potential) of the measune,.

Definition 2.8. We introduce the function
gr(2) Z/F log(z — s) dup(s), 7€ C\Tp, (2.20)
P

which is defined modulo7z.

Thus gp is a multivalued function, depending on the specific choice of the branches
of the logarithmic functions. Our results will involve expressions kk&?, and then the
multivaluedness will play no role.

Another important function is the functiam, given by

0p@) = [ o= bp6)ds. (2.21)
21

The path of integration in (2.21) is in C(I"p U {0}). The functione » is multivalued but
the real part is well-defined. From Propositidd we know that Re»», = 0 on the curves
I'p, I'g, I'e 1, andI'g 2. An important property ob p is given in the following lemma.

Lemma 2.9. The real part ofp p is zero exactly od’p, I'g, I'g,1, andI'g 2. The real part
of ¢ p is negative inDy, p U Do, and it is positive in the remaining pafl, ¢ of the plane.

Lemma?2.9is proved in Sectiod.2.
2.6. Strong asymptotics of the scaled rational interpolants

Recall that inequality (2.1) has been assumed throughout, and that the two polynomials
P, andQ,, satisfy (1.3) wherd,, is monic. In the rest of the paper, the following function
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will be used

2n Z(2n)
sn(2) =277, =] (1 - —) (2.22)
i=0 2nz

We haves, (c0) = 1,70, and from (2.1), we see that, for any compactisef C \ {0}
and forn large enoughs, has no zeros iK.

We will also need the functiow/4w? + 1 which branches at the two pointg given in
(2.12). We choose as cut for this function the cupve, (I'p) (see Fig2), and assume that
it is positive for large positivev.

2.6.1. Strong asymptotics away from the zeros
The following theorem gives the strong asymptotics of the polynonfial®, and the
remainder ternk,, away from their zeros.

Theorem 2.10. With the functions defined abowee have
2s, (1 ngp(z) 1
Py(2) = (=1 V250 L/ p@)e (1+0 (—)) (2.23)

51 (2 W2 () + 1 n’

uniformly for z in compact subsets@f\ I'p,

Qn(Z)

(1L Y2ullp QT (1 4 0 (1)) forz e DoU T \ {21, 22)
52 @3 ()41

2n ngp(z) R (224)
L s (ENGNES) for z € C\ D,
50(2), /40 ()41
uniformly for z in compact subsets@f\ I'p. Furthermore we have
E,(z)
(-1 SR i (1+0 (%)) for z € Do p UTp \ {z1. 22}
B 543 ) +1 (2.25)

- n(z (2)
V20, ()" “ 8P 2) ( +0 (%)) forz €e C\ Do, p,
250 D50 (LY p () W 0 +1

uniformly for z in compact subsets@f\ I'g.

Remark. The asymptotic formula (2.24) for the polynomial, may as well be stated
using functions which are the analytic continuationg/gfandys, to C\ I'g. Lety» and

po be the functions in (2. 11) where the cut for the square root is now chosenlig be

Hence Wp@ = ¥p) andiy(z) = Yy (2) for z € C\ Do, while i p(z) = ¥y (z) and
¥ (2) = Yp(z) for z € Do. Moreover, let

gQ(z)=fF log(z — ) dug(s),  z€C\Tg,
Qo

= / log(z — )W o — W p)+(5) ds.
Ig
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where the measuréy,, is defined in (2.16). Then, one checks thgt(z) = gp(—2) —
log(—1). Usmg the functlonﬂ/P po go and the square roa4w? + 1 with a cut on
the curvapQ+(FQ) —Y p (I'p), the two formulas in (2.24) rewrite more simply as the

single one
25, (1)1 ngo(2)
On(z) = V2 /g @e <1+(9 (—,;)) (2.26)

52y Ap() +1

uniformly for zin compact subsets (b‘J’\FQ Similarly, formula (2.25) for the error function
E, may also be translated in termsypf, y, andgg.

Corollary 2.11. For n large,the leading coefficient, of P,, that is,by Theoren®.1,the
coefficient of degree n dt,, satisfies the following asymptotics:

oty = 5,2(2) <1+ @ (n—la» (2.27)

2.6.2. Asymptotics near the curvEs, I'p, andl g
Itis also possible to obtain uniform asymptotics near the cufyed o, andl g, as well
as in neighborhoods of the branch pointsandz,. We have asymptotic formulas drp,
I'p andI'g, respectively, away from the branch points, which now consist of two terms.

asn — oQ.

Theorem 2.12. Uniformly for z in compact subsets of the domdiip \{z1, z2}) U Do, p U
Do, we have

ngp(z)
Py(2) = (=1)" V2 A @)t - (1 +0 ( ; )>

Sn (2) /4w% (Z) + 1 n%
2nQp(z)
Lo <1+ 6] (%)) : (2.28)
VW5 +1 n

where thet-sign holds inDg and the—sign holds inD p.
Uniformly for z in compact subsets of the dom@lify \ {z1. z2}) U Do, ¢ U Do, We have

On(2)=—(-1)

L V2e"8PD=20 | (1N (2)) (1 +0 <1>>

Sn (2) /4110% () + 1 n*

2n¢pp(2)
e sn(L/Wo(2)) (1+ 0 (%)) . (2.29)

\/4¢2Q(Z) +1
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Uniformly for z in compact subsets of the domélix \ {z1, z2}) U Do p U Do, 0, WE
have

n(gp(z)—z) )
Ey() = (-1 Y2 3 p@) <1+0 (1>>

Sn (2) /4w%(z) + 1 n%

2npp(z) 1
L sn(1/ o (2)) <1+(9 <1>> _ (2.30)

A @) +1 w

Remark. Forzaway froml”p so that Rep » (z) < 0, the asymptotic formula (2.28) reduces
to (2.23). Onl'p we have Rep p(z) = 0, and then the two terms in (2.28) are of comparable
magnitude. Fot € I'p, (2.28) can be re-written as

ngp—(z)
Pn(Z) — (_1)}1 \/zsn(l/lpr(Z)) € 8 (1+ O (n_];c>>

5 (2) \/4¢%_(z) +1
n (z)
Lo <1+ o <%)) . (2.31)
vV 4‘//§)+(Z) +1 "

Note that the asymptotic formula (2.29) (resp. (2.30)) holds in particuld@i@(resp.l'g),

away from the branch pointg andz,, that is, on the curve where the zeros@f (resp.
E,) accumulate.

It may be checked that the two terms in (2.29) are analytic continuations of the two
different asymptotic formulas we have in (2.24). kEoe Du, o, We have g(z) — 2z +
20p(z) = —gp(z) + 2109z + 2¢ by (4.6), and then (2.29) reduces to the second formula
in (2.24) since R@p(z) > 01in Dy, o. For ze Do, we have Re p(z) < 0 and we obtain
the first formula in (2.24).

OnTI o the two terms in (2.29) have comparable absolute values. This causes the zeros of
0, to be close td"p. Similarly, onI'g the two terms in (2.30) have comparable absolute
values, which causes the zerosE)fin D, to be close td .

2.6.3. Asymptotics near the branch points
Near the branch points, the asymptotic formulas involve the Airy function Ai, which is
the unique solution of the differential equation

y'(@) = zy(2),
satisfying
. _ 1 _1/4 _2Z3/2 1
Al (Z) = m Z e 3 1+ O 23_/2 s (232)
A() = — 4,527 (14 0 (2 2.33
i'(z) = b e + =) ) (2.33)
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asz — oo with |argz| < m, wherez/4 andz%/? are defined with principal branch, see
[29] for more details. We only deal with the asymptotic behavioPgfQ, andE,, nearz;.
Similar results can be given for the behavior near the other branch poidere we will
take the branch of the functiam, (z) which is 0 atz = z1. So it behaves like

Ppx) =c(z —21)%?4+ 0 ((Z - 11)5/2>

asz — z1, with ¢ £ 0. Then we define the function

3 2/3
A0 = 3000 (234

which is analytic forzin a neighborhood of1. We take that 23rd power so thafi(z) is
real and negative far € I'p. Then

i) =clz-2)+0 ((z - 11)2) (2.35)
asz — z1 with some constant; # 0. Explicit calculations show that
1= fi(za) = 213 % (2.36)

In order to state the asymptotics near the branch points, we furthermore need to define two
functionss, ands, which are slight perturbations of the function To each interpolation

pointz®" of the scheme8 @, we associate the point

i
@)
sen _ %

! z@n)Z
1+4/1+ w
and we defing, ands,, as

2n Z(Zn) 2n Z(2n) Z(Zn)»Zv(Zn)
5.(2) = 1- 34 . S = 1- 4 R 2.37
50(2) 1"[( 2nz> 50(2) ]"[( P T ) (2.37)

i=0 i=0

Note that (2.1) implies that locally uniformly, as— oo,

3 2
5(2) = 50 (2) <1+0 <'°32”)), 52(2) = 5(2) (1+0 ('Oi ”)) (2.38)

If the parametew in (2.1) equals 1, then the legfactor in the two previou® -term may
be replaced with 1.

Theorem 2.13.Letd,, > 0 be such that, = O (1/p,§) asn — oo. Then,uniformly for
|z — z1] < O,

(_1)}1+1Pn (Z) — ﬁe(”+1)(gP(Z)+(ﬂP(z))
X [nl/ﬁhl(z)Ai ((n + 1)2/3f1(z)) (1 +0 (,ja))

+n"Y8ny(2) A ((n + 1)2/3f1(z)) <1 +0 <nla))} . (2.39)
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(—1)""10,(2)

_ ﬁeZZe(n-irl)(gP (@D +p(2)—22)

X |:n1/6h1(z)e_2"i/3Ai (e_zni/?’(n + 1)2/3f1(z)> <1+ @) <n_];‘))

+ 1~ YOy (z)e?™ RAI (6—27“'/3(;1 + 1)2/3f1(z)) (1 +0 <n—£))} (2.40)

and

(1" E,(2)
— _ﬁeZZe(n+l)(gp @)+¢p(2)—2Z)

% |:n1/6h1(z)e2”i/3Ai (ezm'/3(n n 1)2/3f1(z)> <l+ o ( 1 >)

2
+ 1~ Y8hy(z)e 2 A (62’”'/3(;1 +1)%3 fl(z>) (1 +0 (%))} . (2.41)
whereh andh; are two analytic functions ift — z1| < J,,, which have explicit expressions
h() = (V2@ + iz e %5, (IN2(0) ) Y4

with the branch of the fourth root igf1 (z)1/# taken with a cut alond ', and

ha(2) = (= Naw(@) + iz e s, (IN22(2) ) fa@) 4,
Here
VB (=25, A/ p(2))e 8P

N2i(z) = ,
Vas (@) +1
25,(—2) e8P @
N22(z) = VB (=2e

o (— o ()W () +1

We useN2; and Na, to denote these functions, since in what follows they will appear as
entries in a matriN. Note that the functionk;, h2, N21 and N2> depend om. Note also
that the functiorgp + ¢ p is analytic neat = z;.

From the asymptotics near the branch points, one can deduce the behavior of the extreme
zeros ofP,, 0, andE,, near the branch points. We only state the result for the zer®s,of
0, andE, nearz;. Recall that the Airy function Ai has only negative real zeros, which we
denote by O> —i11 > —12 > -+ > —1y > -+

Corollary 2.14. Let
n* 2B 0<a< %,
By =7 9n it leyga, (2.42)

1 if o=1.
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Letzf,n, v=1,...,n, be the zeros of,, ordered by increasing distance t@. Then for
everyy € N, we have
P _ Ly -2/3 _ -1/3 Imi —2/3
Ly =21— N + 0 (p(n)) =z1+ 2 %es™1yn
v,n 1 f]/_(Zl) (.B( )) 1 v
+0 (Bm)), (2.43)
asn — oo. Letzgn, v=1,...,n, be the zeros of,, ordered by increasing distance to

z1. Then for every € N,

i

i ly
ZVQ,n =71 — o2mi/3 f/(¥ n—2/3 +0 (ﬁ(n)) -+ 271/367€lvn72/3
1 21)

+0 (). (2.44)

asn — oo. Letzfn, v>1, be the zeros of,,, ordered by increasing distance t@. Then
for everyv € N,

P 1 i
ZvE:n I B R T ) (ﬂ(n)) — o+ 2138 p23

f1(z1)
+0 (Bm)), (2.45)

asn — o0.

Remark. Note that the first two terms in the previous expansions do not depend on the
actual choice of the interpolation points.

3. Geometry of the problem

3.1. Trajectories of quadratic differentials

Proof of Proposition 2.4.We recall thaty , andys, will be the two inverse mappings of

w
z=z(w) = m,

given explicitly by (2.11), where the square root is defined outside A gutonnecting the
two branch pointgs = i andzz = —i. We note that), has a pole at 0 and from (2.11) it
follows that 1

Yo2) = B +0 (2) asz — 0. (3.1)
Near infinity, we have from analyzing (2.9)

1 1 1
- T 4= = 2

1 1 1
Yo2) = §+Z+O (?2) (3.3)
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asz — oo. We study the curves so th@% f;l(po —Yp)(s)dsisreal Ifz = z(r) is
arclength parametrization of such a curve, then

z(1)
Re [ / W — wpxs)ds} =0,

<1

which upon differentiating leads to Re' (1), — ¥/ p)(z(1))] = 0. Sincez/() # 0, and
(Yo — ¥p)(2) # O (except at the branch pointg andzz), we find that—z' ()2, —
¥ p)(z(1))? > 0. Thus the curve is what is known in geometric function theory as a trajectory
of the quadratic differential
—(g — Yp)?(2)d2?, (3.4)

see[34,41]. Now, ¢/, — ¥/ p)?(2) is well-defined in the left half-plane, irrespective of the
exact choice fol p. It is analytic with simple zeros at the branch poiptsandz2, and a
double pole at 0.

Trajectories of the quadratic differential (3.4) which start from or enghair z, are
called critical trajectories. From the local structure of trajectories of quadratic differentials,
it is known that three trajectories emanate from a simple zero, with tangent directions at
this point that divide the plane locally into three sectors of equal apertyt® Sincey p
andy , are real functions, that i, (z) = ¥ p(z) andyr , (2) = ¥ (z), we deduce that the
trajectories are symmetric with respect to the real axis. On the other hand, according to the
location of the poink with respect to the cuf' p, we may have

V1+ (=22 = vV1+z2whenceyp(—2) = —p(2) andyy(—2) = — 5 (2)

or

Vit (—2)2=—V1+22 whencey p(—z) = = o(z) andy 5 (—z) = =Y p(2).

From this, we deduce that trajectories are symmetric with respect to the origin, hence also
symmetric with respect to the imaginary axis. Consequently the directions of the three
trajectories at1 can only have arguments/2, 7n/6, 11t/6 or /6, 5t/6, 3n/2. In the
second case, the trajectory with initial directiaty2 must reach the double pole at 0. Since
locally near the origin, the quadratic differentialify —2dz?, it is known that trajectories
near this point are closed contours around it,[8dep. 215]. Hence the second case cannot
occur, so that the three trajectories emanating fearhave initial directionst/2, 7r/6,
11n/6. We label these three trajectories By 1, I'p, andl’o respectively. The trajectory
I'g 1 can only connect; with infinity along the imaginary axis.

For the second trajectord/p, we consider its global behavior in the second quadrant,
which we callG. It is known that any trajectory i must begin and end either a, or
at infinity, or on the boundary d&. It is also known that there can be no closed Jordan
curve consisting of trajectories, since there are no poles of the quadratic differet@ial in
For these properties of trajectories of quadratic differentials[3&eChapter 8|and also
[4]. So the second critical trajectory that startggtcannot end at1, and it should end in
G either on the negative real axis, or on the positive imaginary axis, or at infinifyp If
meets the positive imaginary axis, then together with its mirror image in the right half-plane,
it would be a closed Jordan curve not enclosing a pole. This is impossible. Next assume
thatI'p ends at infinity. At infinity, we have-(, — zpp)z(oo) = —1. This means that
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the quadratic differential has a pole of order 4 at infinity, [g88, and all trajectories that
extend to infinity arrive there with a vertical tangent. Assume that two critical trajectories
extend to infinity inG. Then these trajectories are the boundary of a re@ioim G. Any
trajectory inG’ begins and ends at infinity with a vertical tangent. However, according to
[41, Theorem 7.4% pole of order 4 has a neighborhood, so that any closed trajectory lying
entirely in that neighborhood begins and ends at the pole, but from opposite directions. This
is a contradiction, since there will be trajectoriegdhthat are arbitrarily close to infinity.

This contradiction shows that there can be at most one critical trajectory that extends to
infinity, namelyl ¢ 1. Hencel p can only meet the negative real axis. Then, by symmetry,
its mirror image in the lower half-plane will be its continuatiorztg so thatl"» connects

z1 with zz in the left half-plane. By symmetry with respect to the imaginary axis, the third
trajectoryl’ ¢ connectgy with z2 in the right half-plane. Finally, by symmetry with respect

to the real axis, we also find the trajectdry » that emanates frogy and extends to infinity.

This completes the proof of Propositi@.

3.2. Precise structure of the Riemann surface

Proof of Proposition 2.3. Assertion (a) is clear sinag, andy, are given explicitly by
(2.11), where the square root is defined outside thé guAssertion (b) follows from (3.2)

and (3.3). Finally, in the proof of Propositi@¥, we have shown the existence of the curve
I'p lying in the left half-plane and satisfying relation (2.13). This establishes assertion (c)
of Proposition2.3, which is proved completely.

4. Measures and functions associated with the Riemann surface

In this section we study the measuyes, ., g, and the functiong , andgp. These
measures and functions that are associated with the Riemann surface satisfy several relations
that will be used in the transformations of the Riemann—Hilbert problem that follow in later
sections. We also prove Theoré® and Lemma2.9in this section.

4.1. Properties of the measurgs, i, andpg
We start with a lemma.

Lemma 4.1. We have

1
- /Fp Wo—V¥p)i(s)ds =1. (4.1)

Proof. Let y be a closed contour on the sh&&tp going aroundl"p once in the positive
direction. Then the residue theorem for the exterioy gives

! /l,bp(s)ds = %,

2mi y
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because) , is analytic outside and we have (3.2). If we shrinkto I'p, then the integral
becomes

1
1 / (W p)—(s) — (P p) () ds = 1.
T FP

Taking into account tha) p)— = (\/ o)+, we obtain (4.1).
Now we can prove Theoreh6.

Proof of Theorem 2.6. The curvel p is such that foz € I'p, the integral% f;l(an -
Vp)+(s)ds is real, see PropositioR.3. For z= z1, it has the value 0, and far = zz it
has the value 1 by (4.1). Let= z(¢), t € [0, T], be arclength parametrization bf. The
derivative of

1 rz®

(e = f Wp = Wp)s(s)ds (4.2)

T 21
is equal to% (wQ(z(t)) — tpp(z(t))) Z/(¢) and this is different from 0 for € (0, T). Thus
(4.2) is strictly increasing from O far= 0 to 1 forr = T. This immediately implies that
pp defined by (2.16) is a probability measure bp. By symmetry,u, is a probability
measure o .

For uy we observe that (2.17) defines a real measuré gnsince, by Propositio.3,
% Zzl(po —Yp)(s)dsisrealforz € I'g 1 U I'g 2. Using an argument based on arclength
parametrization, similar to the one above, we find that on eachlpast j = 1,2, the
measureu is either positive or negative. Singg, (s) —p(s) = 1+ O (1/s%) ass — 00
(see (3.2)—(3.3)), we have fore I'g 1,

1 [z 1
—./ o —¥p)s)ds=—=(z—-20+0@1) asz— oo, zelga.
T Jy Tl
Since Im(z — z1) — +o00 asz — oo alongl g 1, the integral is positive as— oo along

I'g 1. As the measurgy; is of constant sign o z 1, we may thus deduce that it is positive
everywhere o g 1. The reasoning fof g 7 is similar.

4.2. Properties ogp and ¢ p

The functiong p was defined in (2.20). This is a multi-valued function, depending on the
choice of the branch of the logarithm l@g— s), which we assume depends o0& " in a
continuous way. Sincgp is a probability measure, tlgefunction is defined modulor.

Lemma 4.2. For the derivative of the functiogp we have

gp@ =2Wp()+1,  zeC\TIp, (4.3)

Proof. The derivative ofzp is easily obtained as

, 1 1
gp2) = p— /Fp (g —¥p)i(s)ds.

=S
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If v is a closed contour going arouiith onR p in the positive direction but witl outside
7, then (sinceyp)+ = (Y p)-)
, 1 s
gp(@) =— Ma’s.

m y -9

The integral overy can be calculated with the residue theorem for the exterigy, &dr
which there is a residue atnd atoo given by @.2). This proves (4.3).

A useful explicit expression of p in terms of the mapping functiog » is given in the
next lemma.

Lemma 4.3. The functiorg p has the following explicit expression in terms of the mapping
functionsy p,
1 5 1
gr(z) =2z c,bp(z)+§ —log | ¥5(z) — 1 —1-log(-2),
forz e C\ I'p. (4.4)

Proof. We letz € C\ I'p and putw = y»(z). Taking a derivative of (2.9), we find, since

w'(z) = Z,(lw),

2=— ! + : '
- ((w 122 " (w+ 1/2>2) v
Thus

, . 1 1 1 /
Vr@tl==- (’” * i) (+<w 122 Vs 1/2)2> v

(ot 1 ,
- <w+1/2 w—1/2 (w—1/2)2>w

_4 [— log(w? — 1/4) +
dz

w— 1/2:| '
By (4.3), we then see that

gp(z) = —log(w? — 1/4) + +C

w—1/2
for some constart€. The constant can be determined from the behaviar for oo, since
gr(z) = logz+ O (1/2), andw = Yp(2) = —% + 2—11 + O (1/7%). The result is that
C =1-log(—2). Using (2.9) we then find (4.4).

We recall that the functiop , was introduced in (2.21). The next lemma connegcis
with gp, and gives jump properties @fp acrossl p. It will be frequently used in what
follows. Throughout the rest of the paper we éde denote the constant

in
L=——. 4.5
. (4.5)
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Lemma 4.4. Forz € C\ I'p, we have
gp(@=logz+z—@p(z) +¢, (4.6)
On the contours we have
gp+(@) +gp—(2) =2l0gz+2z+ 2, zelp, 4.7
and

gr+(2) —gpr—(2) =—@p(2) + @p_(2)
=—20p,(2) =2¢0p_(2), z€lp. (4.8)

Proof. Integrating (4.3) front, to zover some path i \ I'p, we get

gr(2) —g1>(z1)=2/z1Z Yp(s)ds + (z — z1), (4.9)
=—2q)p(z)+2/11Z Yo(s)ds + (z —z1), (4.10)
=—2<0p(z)+2fds—s —Zﬁzlﬁp(S)der(z—m). (4.11)

Hence ) )

gr@@) =logz+z—@p(z)+ (gp(z1) —log z1 — z1),
so that (4.6) holds with constant

£ =gp(z1) —logz1 — z1.

Using the explicit expressions (4.4) fgp we are able to show thdtis equal to (4.5).
Next, we use Lemmad.2to find

gr+(2) +gp-—(2) = 2/ Wpy +¥p_)(s)ds+2(z—z1) +28(z1), z€Tp.
71

OnTI'p we haveyp_(s) = Yy, (s), so that
Z
8@ +er-@) =2 [ Wp Q) ds + 221420, zelp.
21

Sincey p(s) + Yo (s) = 1, we obtain
gr+(2)+gp—(2) =2logz—2logz1+2z=2logz+2z+2¢, zelp.

This proves (4.7). Finally, if we take (4.6) on the and —sides ofI'p and subtract,
we get

gr+(2) —gp- ) =—0p, (@) +0p_(2), zelp.
This gives (4.8), sincep_ (z) = —@p_(2).

Sincegp(z) =log z + O (1/z) asz — oo, we get from (4.6) that

1
(,DP(Z) =z+£4+0 (Z) asz — o0. (412)
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We also see from (4.6) that, is a multivalued function, which is defined modulai2
sincegp is defined modulo 2:.

Proof of Lemma 2.9.By Propositior2.3and the definition of , we have thatRe , = 0
OHFP,FQ,FEJ, andFE,z.

We know that Rep, is a harmonic function irC \ (I'p U {0}). Sincepo(z) ~ 1/z
asz — 0, it easily follows from (2.21) that R@p(z) — —oo asz — 0. Then by the
maximum principle for harmonic functions we get that@e < 0 on Dg.

As z — oo, we have 4.12). On the unbounded curvEg 1 and! g > we have Repp =
0. Asz — oo in the unbounded domaib., p we have limsup Ré& + ¢) <0, so that
lim sup Rep p(z) <0 by @.12). Again it follows by the maximum principle for harmonic
functions that R@p < 00N Dw p.

For the remaining domaib o, we have that Re p is harmonic, with lim inf Rep p (z)
>0asz — oowithz € Do, g by (4.12). Thus again by the maximum principle, e > 0
on Dy, . This completes the proof of Lemn2a9.

5. The Riemann—Hilbert problem and the first two transformations

Throughout Sections 5 and 6, we will restrict the analysisaional indiceswith respect
to the given schems := B@) = {z,@')}izﬁ0 of interpolation points, namely indicese A
where

A={neN, @, satisfying (1.3) has exact degres. (5.2)

Moreover, we assume th#ie scheme B of interpolation points is such that the/sé&t
infinite.

Remark. Letn € A and letp,+1,-1 andg,+1,—1 be the rational interpolants of type
(n+1,n— 1)toe* satisfying

Dn+1.n-1(2) + C]n+l,n—l(z)€Z =0 (w2+1(2)), where

w22+1(2) = 12_"[ (z - ZEZ")> :

i=0

Thenp,41.,—1is of exactdegree+ 1. Indeed, assume thatdggy1,,—1 < n+1. Thenthe
pair(pn+1.n—1, gn+1.n—1) Would be a pair of typé:, n— 1) solving the rational interpolation
problem of type(n, n), which is impossible since € A.

Our asymptotic analysis is based on the Riemann—Hilbert probleiviflmmulated in
the introduction, see (1.4) and (1.5). In this section we prove that, whelongs ta1, the
Riemann—Hilbert problem has a unique solution and that the solution is given in terms of
the polynomialsP,, Q,, and the remaindek,,. We also do the first two transformations of
the Riemann—Hilbert problem, which consist of a normalization of the problem at infinity,
and a deformation of contours.



124 F. Wielonsky / Journal of Approximation Theory 131 (2004) 100—148
5.1. The Riemann-Hilbert problem

We show that the Riemann—Hilbert problem i6andn € A has a solution in terms of
the rational interpolants.

Theorem 5.1. Letn € 4 and P,, Q,, E,, and 2, be as above. We assume that n is
large enough so that all roots d®,, are inside the contourl’. Then the solution of the
Riemann—Hilbert problem for {ee the introductions unique and is given by

A Prrn-12n2) Q7 @D gns1.n-1(2n2)
Y(Z)_< Po(2) 2. 5(2) 0n(2) ) (-2)

for z outsidel’, and

~{ Par1a-12nz) @ (2)e " en1.0-1(2n7)
Y (Z)_< P.(2) QY ()e " E, () ) ®3)

for zinsiderl". In the first rows of5.2) and (5.3) we use the rational interpolants of indices
n + 1,n — 1 normalized so thap, 1 ,-1(2nz) is @ monic polynomial of degree+ 1,
which,in view of the previous remarks possible. In the second row we use the rational
interpolants of indiceg, n normalized so thaQ,,(z) = ¢,.,(2nz) is a monic polynomial
of degree n.

Proof. The givenY is analytic inside and outside the contdurThis is clear from (5.2) and
(5.3), except perhaps for the second column of (5.3) which has possible singularities at the
roots of€2,,. However, the singularities are removable siage,, (z) = O (W 4+n,+1(2)).-
Next, the normalizations such thati1.,—1(2nz) and O, (z) are monic polynomials of
exact degre@a + 1 andn respectively can always be performed since A. From this
choice of normalizations, we see that the asymptotic condition (1.5) is satisfied.

The jump condition can easily be checked. For the entries in the first column it reads

Y1)+ = Y1), (Y04 = (Y21)-,
which is indeed so sincE;1 andY»; are both polynomials. We also have
(Y12)4(2) = 2, (D)e et 1,0-1(212)
=0, (pn+1,n—1(2nz)€_2"z + qn+1,n—1(2nz))
= 0,1 @e (1)~ () + (Y12)-(2)

and this is the jump condition (1.4) for the second entry in the first row. The last entry is
handled in the same way. ~

To prove unigueness, we assume tlais another solution of the Riemann—Hilbert
problem. First observe that dgtis a scalar function which is analytic i@ \ I'. Because
of (1.4), we have thatdetY)(z) = (detY)_(z) for z € I', so that det has no jump,
making det an entire function. For largewe have det'(z) = 1+ O (1/z) by (1.5),
hence by Liouville’s theorem dét = 1 everywhere. We can therefore considaf 1,
which is analytic inC \ I'. There is no jump od’ since(YY 1, (z) = (YYH_(z) for
everyz e I', henceYY 1 is entire (i.e., each entry is an entire function). For lazgee
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haveYY~1(z) = I + O (1/z), hence Liouville’s theorem implies théity ~*(z) = I for
everyz, and henc& (z) = Y ().

5.2. First transformation

We will use the functiorg p, and the constarit= —"7” from Section 4.3 to transform the
Riemann—Hilbert problem for to a Riemann—Hilbert problem fds, given by

—(+Dgp(2) 0
—n— e
U)=L" lY(z)( 0 o+ 1)gp () ) L™, (5.4)

whereL is the constant diagonal matrix

et 0
L_(O e_ﬁ). (5.5)

For the contoud” we takel” = I'p U I'g, wherel g is a contour connectingp to z1 and
lying in Do, 0. Then Repp > 0 onI'g by Lemma2.9.

We note thatJ is analytic onC \ I', sincee2? @ is analytic and single-valued @b\ I’ p
andl'p C T

Sincegp(z) = logz + O (1/z) asz — oo, we have #1tDsr@) = n+1[1 4L O (1/7)]as
z — o0o. Hence

Uz =1+0 <%), 7 — 00. (5.6)

SoU is normalized at infinity.
The jump relation forU needs to be worked out on the two pieces of the contour
I'=IpUIg.Forze I'p we have

—(n+Dlgr+()—gr-(2)] ,o2z,—1 (n+1)[-2logz—2z+gp+ (2)+gp—(2)—2(]
e zets (z)e
U+()=U-(2) ( 0 " oM+ Dgp(D—gp ()]
(5.7)
Taking into account Lemmé.4, we can simplify the jump (5.7) to
2(n+D)ppy(2) 2z —1( )
e ze“ts, (2
U+(Z) = U_(Z) < 0 82(n+1’)1(pp_(z) ) , Z€ FP.
On the partl'r we have
2z.—1 (n+1)[—2logz—2z+2¢gp (z)—2¢]
Up@) = U_(z) (13¢5 (e (5.8)
0 1
If we use Lemmat.4then (5.8) can be re-written as
2z -1 —2(n+D)¢p(2)
Us(z) = U_(2) (é ze™s, (Z)el ) ,  zelg

Summarizing, we have the following Riemann—Hilbert problemUor
1. Uis analyticonC\ I
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2. U satisfies the following jump relations

24+ Dpp, (2)  ,p20 1

e ze—s <

U+(Z) =U_(2) ( 0 eZ(n+lS1(/)p(()z)) s z€l'p, (59)
225-1(,) =20+ D)9 p(2)

Us(z) =U_(2) (é %€ (z)el ’ ) , z € I'g. (5.10)

3.U2)=1+0 <%> asz — oo.

The contoutl ¢ is in the region where Re is positive. The jump matrix in (5.10) for
U on the contoul 'y is then the identity matrik plus a matrix with entries that tend to zero
exponentially fast as — oo.

The functiong,, = —¢@p_ is purely imaginary on"p because of (2.13), so that the
diagonal elements of the jump matrix éhp are oscillatory.

5.3. Deformation of contours

The jump matrix in (5.9) can be written as a product of three matrices
(eZ(n+l)(pP+(Z) Z€22S;1(Z) )

0 e2n+Dop_(2)
— 1 0 0 z2e%571(2)
- Zileizzsn(Z)ez(n+l)(pP—(z) 1 _Zflefzzsn(z) 0
1 0
* (zlezzsn (z)e2ntDep (@) 1) : (5.11)

Instead of jumping over p in one jump, we will make three smaller jumps, and rather than
jumping over one contour, we jump over three contours, and each contour deals with one
of the matrices in the product (5.11). We will open up a lens ardupgwhich consists of

two contoursl p- U I'p+ connectingz1 andzp, such that’ p- is on the minus side af p
andI p+ is on the plus side of p, but still inside the region where Re» < O.

These contours are drawn in Fi.

All together there are 4 contours, and they determine 4 regions in the plane. The second
transformation/ — T will be defined in each of these regions separately. We dé&fase
follows. We take

T(z) =U(2), (5.12)

for zin the unbounded region, and in the middle region boundedfl by andI'. In the
two regions neaf p we put

TG = U(z)Vp-(z) for z in the region bounded b¥/p- andl'p, (5.13)
@) = U(z)Vl;_l(z) for z in the region bounded b¥ p andI p+, '
where
1 0
Vp-(2) = Vp+(2) = z_le_zzsn(z)ez(”"’l)q’P(Z) 1) (5.14)

Then we have the following Riemann—Hilbert problem Tor
1. Tis analytic in each of the 4 regions,
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Fig. 5. Deformation of contours arourddp.

2. T has a jump on each of the 4 contours
Ti(z) =T_(2)Vy(2), zely,

wheres stand for any of the four symboR, P~, P*, R. The matrice¥/p-, Vp+ have
already been defined above. The other jump matrices are

0 2z.—1
Vr= <_Z_1€_2z5n(z) N s6 (Z))’ (5-15)
2z .—1 —2(n+1)pp(2)
VMz):(é“ S (Z)el ’ ) (5.16)

3.7 =1+0 (%) asz — oo,
Observe that all jumps, except for the jumpBp, tend to the identity matrix exponen-

tially fast asn — oo. Hence we expect that the dominating contribution is the jp@n
I'p.

6. Construction of parametrices and final transformation
6.1. Parametrix for the exterior region
We will now solve a Riemann—Hilbert problem for a matrix valued functibon the

contourI”p which, in view of what was said at the end of the previous section, is expected
to describe the main contribution of the Riemann—Hilbert proble. of
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We look forN : C\ I'p — C?*2 satisfying
1. Nis analyticinC\ I'p.
2. N has jump onl"p given by
_ 0 zezzsn_l(z)
Ni(z) =N_(2) (—z‘le—zzsn ) 0 , zelp. (6.1)
3.N)=1+0 (%) asz — oo.

Note that, since the jump in relation (6.1) involves the functigrihe matrixN will depend
on the degrea. Recall also that the functiofig ands, were defined in (2.37).

Proposition 6.1. A solution of the Riemann—Hilbert problem for N is given by

_( F1p@) Fl(lPQ(Z)))
M@= (FZ(lPP(Z)) o))’ (6.2)

where
(w—1/2)G (w)
Fr(w) = — , 6.3
T oA+ 1 ¢
Fa(w) = VZ5,(=2)(w + 1/2)G(w)’ 6.4)

Vaw? + 1

with v/4w? + 1 defined and analytic i€ \  » (I'p), and such that it is positive for large
positive w. The function G is defined by

(w+1/2)
_ T T w-1/2
Glw) = [ 2(w 1/2)sn(1/z)”1€/2) forw € Y(R p), (6.5)

ﬁ%me_("’Jrl/z) forw € lﬁ(R Q)

Proof. Let us consider the first ro@w11, N12) of N. From (6.1) we get the following jumps
onl'p o
(N11)+(z) = —z7 "¢ “5,(2)(N12)-(2),

{ (N1 (@) = 2eZ5, N (@), TP (6.6)
We can seéVi1 as a function on the she®& p of the Riemann surfac® and Ny as
a function onR . Then we transform the problem froi with the variablez, to the
complexw-plane, via the mapping : R — C. The variablez andw are connected by
(2.9). The images of the two sheets, the images of the branch pejnts and the image
of the cutl"p are shown in Fig2.

Note that the images df » under the mappingg ,, andy/»_ (positive and negative
boundary values af , on I'p) give two arcs fromw; to wy. They are oriented as shown
in Fig. 2. The orientation corresponds to the orientatiod’pf Together the arcs make up
a simple closed loop aroundl/2.

Now we transplant the (as yet unknown) functidnig andN12 from the Riemann surface
to thew-plane, by defining; as follows:

Nu(5227) . we VR p),

Fi(w) =
! N]_2 #1/4)’ wetp(R Q)

(6.7)
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ThenFy is analytic inC \ ¥ (I'p). The jumps thaii should satisfy can be determined
from (6.6) and are given by

{ Fii(w) = ze%s,; Y (2) Fi—(w), weYp_ (Ip),
Fir(w) = —z Y Zs, () Fi—(w), w € Yp, (I'p),
wherez = z(w) = w2+1/4'

The asymptotic condition oN implies thatN11(z) — 1, N12(z) — 0, asz — oo. For
Fj, this means that

(6.8)

Fi(-1/2) =1,  Fi(1/2 =0. (6.9)

We also wantFy (w) to have a finite limit asv — oo, sincew = oo corresponds ta = 0
on theQ-sheet.
We now seelF; in the form

(w—1/2G(w)

O R Cova T (610
ThenG should be analytic i€ \ Y, (I"p) with jumps
{ Gy(w) = zing;(z)G_(w), weyp_Tp), 6.11)
Gi(w)=z""e%5,2)G_(w), weyp, Ip),
with z = z(w). The normalization foG is
G(—1/2) = —25,(—2). (6.12)

Taking logarithms in (6.11) and using the well-known Plemelj formula, one recons@ucts
as given by (6.5), which indeed satisfies (6.11) and (6.12). Then by (6.10) it followBjthat
has the correct jumps (6.8) and normalization (6.9). Then from (6.7) we redgyeand
N1z in terms of F1 by

N11(z) = Fi(Yp(2)),  N12(2) = F1( o (2)).

Then the jump (6.6) is satisfied, and in addition the normalization at infinity is correct. So
we have found the first row df.

The proof for the second row is similar. The only difference is that we have a different
normalization at infinity, which leads to the construction of a functiérihat satisfies the
same jump (6.8) asiFbut is normalized by

F2(—=1/2) =0, F2(1/2) = 1.
Similar calculations then lead to the formula (6.4) with the same fun@ion
We remark that the entries bfhave fourth root singularities at the two branch points
andz,. More precisely,

Lemma 6.2. For each given n sufficiently largéhe entries of N behave as follows near
the branch points. As — z; with j = 1,2, we have
{ Ni1(z) = O (lz —zj| 714,

k=12 6.13
Ni2(2) = O (lz —z;174), (6.13)
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Proof. Sincew is a non-degenerate critical point of the mapping z(w), we have for
the inversew = p(2) asz — z1 = z(w1),

Yp(2) = w1 +cz—z2)Y2+0 (z-z21) (6.14)

wherec is a non-zero constant. Sinegq is a simple root of &2 + 1, it then follows that

vV 4%)(1) +1l=cz —z2)¥*+ 0O (Iz - Z1|3/4> , Z— 1, (6.15)

with ¢z # 0. Since the numerators @, F> as given by (6.3) and (6.4), do not vanish for
w = wy, we find

Na@) = F(p@) =0 (Iz _ zlrl/“) . k=12

asz — z1. Inasimilar way we find thaW2(z) = O (|z — z1|~/4) asz — z1. This proves
(6.13) forj = 1.
The behavior near the other branch painfollows in a similar way.

Remark. It will be useful to have another representation for the entries in the second row
of N. They are

N \/_ZFn (_2)3'\;1 (1/¢P(Z))eng(Z)

Noi(z) = ,
Vai (@) +1
—2)08P ()
No2(z) = VB (Dt (6.16)

G (— 4 @) AR () +1

It may be checked directly that these functions have the right asymptotics»aso, and
satisfy the correct jump relations étp. They also satisfy th® -conditions of Lemm®.2.

The Riemann—Hilbert problem fdris now very close to the Riemann—Hilbert problem
for N because the jumps farandN on the contoud p are the same and the jumps for
T on the other contours tend to the identity matrixsas> oo, uniformly away from the
branch points. So we expect tHabehaves likdN asn — oo away from the branch points.
However, in order to justify this, a more detailed analysis of the Riemann—Hilbert problem
near the branch points is needed.

6.2. Parametrices near the branch points

Before starting the construction of these parametrices, we state some relations and esti-
mates satisfied by the functions that were defined in (2.22). Recall that the interpolation

pointsZ(z") are subject to the growth condition (2.1).

i

Lemma 6.3. For anyz1, z2 andzz in C \ {0} such that;* + z,* = z3*, we have

2
50 (205 (22) = 52 (23) <1+ o ('Oi ”)) oo (6.17)
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In particular, with z1 = z, z2 = —z andzz = oo, we get

2
sn(2)sp(=2) =1+ @) <IO?1 n) s n — oQ. (618)

We also have

log? n
sn<1/wp<z>>sn<1/wg<z)>=sn(z><1+o( ! )) no oo, (6.19)

Moreover,

-

sp(2) =0 (nﬁ) , s;lz) =0 (n%> , n— oo (6.20)
and,for any z inC \ {0},

Isn(2) — L< A+ p,/(2nlz])) (explp,/Iz) — 1), (6.21)
wherep, has been defined if2.1) as the radius of a dis® ,, that contains all the points
of B,

Proof. In order to prove the first estimate, we group together the facteygimn) ands;, (z2)
corresponding to the same interpolation prﬁT). Then, recalling (2.1), we notice that, as

n— 0o,
(2n) (2n) (2n) 2
Z; Z: Z |Og n
j 1-2 =1-— 1+0 .
( 2nzl) ( ZnZZ) ( 2nz3> ( * ( n? ))

Since, as1 — 00,
| 2 2n+1 | 2
(sv0 () rvo0 (222),
n n

equality (6.17) is proved. The numbg, (z) andy,(z) are the two roots of (2.10), hence

Yp@)+ o) =~

so that (6.19) is a consequence of (6.17). The estimates (6.20) follow from the inequalities

2 122" 1227
H(l 2n| |><|S"(Z)|<H(1Jr 2n|Z|)

i=0

the estimates
x2 X\
ere ntx K (1+—) <eé*, —n<x,
n
and (2.1). The inequality (6.21) follows also easily from the definitios,0f2.1), and the
following elementary inequality: lfi1, . . ., uy are complex numbers, then
N

[Ta+u)-1

n=1

N

<[] @+ b - 1.

n=1




132 F. Wielonsky / Journal of Approximation Theory 131 (2004) 100—148

The construction of the local parametrices resembles the construction described in Section
6.2 of[27]. The parametrices consist of two new contait@nd! ', which are small circles
of radiusé,, = O (1/p,zl) asn tends to infinity, centered at the two branch points. Note that
if oin (2.1) is different from 1, then,, depends om and the contour§’y andI’2 shrink to
the branch points as becomes large. Inside each of these contours the Riemann—Hilbert
problem forT is solved exactly.

Zooming in near the branch point gives a Riemann—Hilbert problem with five contours
Ip-,I'p, I'p+, I'g, I'1. The jumps on these contours are

1 0
Vp-(2) = Vp+(2) = (Z—le—ZzSn(Z)€2(n+l)(pp(z) 1)

Vo — 0 ze%s7(z)
P=\ 2t Z5,(2) 0
27 .—1 —2(n+L)@p(2)
vR<z>=<éze R )

We look for a 2x 2 matrix valued functior D defined within the diski; surrounded
by I'1, such that
1. MDisanalyticind,\ I'pUT'p- UTp+ UTg),
2. MD has the jumps

MY =mMP)Vvx),  zely,

wheres stands for any of the symbos P~, P, andR.
3. OnI'; we have that/® matches\ in the sense that

1

uniformly for z € I'1.
A local parametrix can be built which uses the conformal mapgingom 441 onto a
convex neighborhood of 0 defined by

2
0p) = 3 [1()]%2.

It mapsI'p onto a part of the negative real axis. Moreover, freedom is left, which allows
one choosind g so that itis mapped to a part of the positive real line, Apd and! p+ so

that they are mapped onto rays in the com@gxane. We denote the imagesltf, I'p-,
I'p+,andl'g, by Xp, Xp-, 2p+ andXx. These contours are shown in F&.On these
contours we use the constant jump matrices

PO 10
VP=VP+=<11>
~ 01
V”:(—10>
-

onXp- andX p+,

onXp, and

A
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Yp-
region 1I region I
Sp 0 Sh
region II1 region IV
by P+

Fig. 6. The contours for®

on X k. This Riemann—Hilbert problem is well-known and its solutif}’ is given in terms
P05 = ( Ai(s) —Ai(w3s)

of the Airy function Ai(z) by
—m/6
Ai’(s) —W%Ai/(wgs) < zn/G) sel,

Wy [ Ails)  —Ai(ws) o—in/6 R
Y (S)_<Ai’(S) —3AT (w3s) ln/G Vp-, sell,

Ai(s) w2Ai(w3s ’”/6 _
PO = (Ai’((s)) A3i/(c(ogg))> m/6) Vil selll

Doy — Ai(s) 602Ai(a)3s) —ITI/G 0
’ (S)_(Ai’(s) Asi’(wgs) )( 0 /6 )" selv,

wherewsz = ¢2™/3 is a primitive third root of unity.
With the above definitions o#® and f1 it may then be shown that for any analytic
prefactorE @ the matrixM @ defined by

MY )= ED)PD((n + 13 f1(2))

. Z—l/Ze—ZSr]l-/Z(Z)e(n-i-l)(/)P(Z) 0 (6 23)
0 Z1/2sn—:l./Z(Z)ezef(nJrl)(pp(Z) : )

satisfies the jump conditions dny, wheres s any of the symbol®, P—, P*, andR. The
extra factorED) has to be chosen in such a way thét! satisfies the matching condition
onI; as well. We choose

i Z1/2 1/2(2) 0
ED () = /™8 N(z) ( 0 172 _Zsl/z(z)

1-1\ ((n+12Pfi(2)3 0
L. . 6.24
) (l i ) ( 0 (n + D3 f1(2)) "4 (624
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On the part ofl'1 that lies in(f1) ™1 (1) (the arc betweed - andI'g) the asymptotic
expansions for the Airy functions (2.32) and (2.33) give

Ai((n + 1?2 f1(2))
= 1

=m0t 170 (fi(2))H e~ 0P @ (1 +0 (;)) :
Ai((n + 1203 f1(2))

= sz (n+ 1)71/6(]?1(2))771‘ o7/6,(1+1)0p 2) (1+ o (%)) 7
Ai'((n + 1)2/3f1(z))

2f (n+ DY (fi())d =@ <1+ @ <i)) :

A((n + 1)2/ 303 /1)
(n+ DYS (fu(2))h e i/8p+D0p <1+ 0 <i>>

2f
Here the fourth root imfl(z))%t is defined with a cut alon§f p. On this part off 1, we have
n+1)7Y6 0
0 (n+ 1)1/6>
5 ( (f1(z))" 3 g—(n+1>qop<z) 1+0 (&) - (fl(z))—l% ¢i™/6em+Dor() (140 (1)) )
— (i@)3 V0@ (140 (1)) — ()7 /0TI (140 (1))

e—zn/GZ—1/Ze—zsi-/2(z)e(n+l)(/)p(Z) 0
X 0 ein/Gzl/an—1/2(Z)eze—(ﬂ+1)(ﬂp(Z)

M(l)(z) — % E(l)(z) <

After plugging the expression (6.24) of #(z) and performing straightforward compu-
tations, we get

7 le” s,,(z)O ( ) 1+(9 (2 )

We now check that the matching condition (6.22) indeed holds true. In view of the previous
expression fotd V(z), it is equivalent to show that the quotienis’(z) N21(z)/N12(z),
s71(z) N11(z)/ N22(z), and their inverses, are all of ord8r(n*=%/2) uniformly forz € I'y
asn becomes large. Let us look at the first express@ﬁz)NZl(z)/le(z). Making use
of relations (6.2)—(6.5), we are lead to study the order of the quotient
50 (=2)5,(=2)5, (1) p(2))50(— 4$Q(Z)) $2(—2)s ( -z )
$n(2) S "\V1¥22

x(1~|—0 ('Of”)) (6.25)

where, in the last equality, we have successively used the relations @E8)(2)Y o (z) =
1, (6.19), (6.18), (6.17), and the explicit expressions (2.11)feandy ,. We havelz —

z1| = 8, which, by hypothesis, is of order 2. Then,| — z/v/1 + 22| > 2—01172 for n large.
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Applying the first estimate in (6.20), we deduce thatz as oo,

—Z s1/2
sn | ——= ) =0 (n%") =0 ), 6.26

(«/ 1+ zz> ( ) (6.20)
uniformly for |z — z1| = &,. Sinces?(—2) = O (n1=*/2), we get in view of (6.25) and
(6.26) thats; 1 (z) N21(z)/ N12(2) is of orderO (n1=%/2). The three others expressions may
be handled in the same way. The matching condition (6.22) is proved.

From (6.24) it is easy to see thatY is analytlc inAy \ I'p.On Fp, bothN and(f1)4

have a jumpN has the jump (6.1) andf1)4 satisfieg( f1) T=—i( fl)4 Straightforward
calculations then show thaﬂ(l) EY onrp, sothatE®D is analytic acrosg p. From
(6.24) and the fact that the entrleé‘d)have at most fourth root singularitieszat see (6.13),
we see that the entries &V have at most a square root singularityzat SinceE® is
analytic in4; \ {z1}, the singularity at; is removable, and this proves thatV) is analytic
in the full A1. This completes the description of the parameti$) in the neighborhood
A1 of z1.The expression (6.23) of the parametridé? will be used when computing the
asymptotics stated in Theoreril3and Corollary?.14.

In a similar way, we can construct a parametri¢& near the other branch poigg.

6.3. Third transformation

We now introduce the final matrix

S = ;(z) (N((zz) L z _out_siderl andly, 6.27)
@) (M) zinsideI’ or I',

where the contours'; and > (which depend om if & < 1) were defined in the previous
section. Insidd"; or I'; the matrice§ andM ) have the same jumps, her8kas no jumps
insidel’;, j = 1,2. Outsidel'; andI'; the matriced andN have the same jump matrices
onI p. HenceShas no jump od” p. This means tha solves a Riemann—Hilbert problem
on the system of curves shown in Fig.

S is analytic outside the above system of contours and it is normalized at infinity

Sz)=1+0 (1'> , 7 — oo. (6.28)
F4

Theorem 6.4. The matrixS(z) has the behavior

1

uniformly onC \ X5, whereX's are the contours in Fig7.

Proof. The jumps on all of the contours are uniformly of the fofm O (e~<") with some
fixedc > 0, except for the jumps on the circlés where we have

S:@) =S_-@MP )N, zelj.
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Fig. 7. Contours of the RHP f&.

Because of the matching condition we have

MP QN ) =140 <W>

uniformly for z € I';. HenceS(z) solves a Riemann—Hilbert problem, normalizechat
with jumps close to the identity matrix up 6 (1/2*t1/2), uniformly on the contours
2's. We can then use arguments as those leading to Theorem 7.[I0] o obtain (6.29).
We can also use Theorem 3.1[@2], whose elementary complex analysis proof is due
to Aptekarev{1]. Note that, in our situation, the contodils is not simple and also varies
(slowly) withn. One checks that the proofj@2, Theorem 3.1¢an be adapted to the present
case.

7. Proofs of the asymptotic formulas
We now know the asymptotic behavior (6.29) 0c&d&: € A andn — co. We will trace

back our steps to the original Riemann—Hilbert problen¥ftr obtain asymptotics for the
scaled polynomials in the rational interpolation to the exponential function.

7.1. Proofs of Theoren10,2.1, and Corollary2.11

Proof of Theorem 2.10whenn € A. We recall that1 denotes the set of normal indices
with respect to the scheni® namely the indicea such that de@®, = n, see (5.1). We
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start with the proof of the asymptotic formula (2.23) #®y. Let K be a compact subset of
C\ I'p. We have the freedom to take the contoligs-, I' p+ nearl p, and the circled’;
andI'; aroundz; andz in such a way thaK is in the exterior of these curves. Let K.
Then we follow the transformations— U — T +— S. We see first from (5.4) that

P,(2) = Y21(2) = Uy (z)e 2+ Dt Der @)

Then from the definition of in (5.12) and (5.13), we get thab1(z) = T>1(z). We finally
note that? (z) = S(z) N (z), sincezis outsidel'; and 2. For B1(z), we get

T21(z) = $21(2) N11(2) + S22(2) N21(2).
SinceS = I + O (1/n*+t1/2), we get

Py(z) = e 2t DL g ) <N21(z) + N21(2)O (

1
+ N11(2)O (W))

uniformly onK. From the expressions (6.2)—(6.4) and relations (2.38), we see that, locally
uniformly, N11(z) is of the same order agz(—Z)Nﬂ(z) which, in view of (6.18) and
(6.20) applied withy = 2, leads to

Nu() = Na@O (n/12). (7.1)

n(OH‘l)/Z)

Hence
Po(2) = Nay(z)e™ 20+ ont D (@) (1 Lo (i»

nOC
uniformly on K. Now we use the formula in (6.16) fa¥,4, the relations (2.38), and we
recall thatt = —=i /2, to obtain 2.23).

For O, we proceed differently, because of the w@y appears in the entries §¥f We
takezo € C\ I'p, and show that there is a neighborhadaf zo such that (2.24) holds
uniformly for z € 4. First we assume thap belongs to the outside regidh\ Do. Then
we can take the original contollirso that a neighborhoaod of zg is in the outside region.
Then forz € 4, we have by $.2)

0n(2) = 21 (2)Y22(2) = Uz2(2)Q(z)e " TP @,
We can open the contour aroutitp so that4 is in the exterior region to this contour.
Then we havel = T = SN = (I + O (1/n®*Y/2)) N, so thatUza(z) = Na2(z) +
N22(2)O (1/n*TD/2) 4+ N1p(2)O (1/n*+D/2). In the same manner we proved (7.1), we
can show that, locally uniformly,
N12(z) = N22(2)O (nF="72), (7.2)

Hence,Uz(z) = Noa(z) (L+ O (1/n*)) uniformly for z € 4. This leads to the second
formula in (2.24), if we use the formula fa¥2, in (6.16), the relations (2.38), the fact that
—4Y p(2)Y p(z) = 1 and relation (6.19).

If zo € Do, then we can also open up the lenses araipao that a neighborhood of
zo IS not contained in these lenses. Then we have foia, by (5.3)

0n(2) = e " Ey(z) — Py(z)e” 2"
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and we need to find out, what is the dominant contribution gests large. We already have
the asymptotic formula foP,,, from which it follows that

1
= log | Py(2)e™*"| — Re(gp(2) — 22), (7.3)
For E,, it is easy to obtain in a similar way
1
" log |E,(z)e™ ™| — Re(2 log z — gp(2)). (7.4)

Now it turns out that for € Do the termP, (z)e—2** dominates. Indeed, we have by (4.6)
Re(2gp(z) — 2z — 2 log z) = —2Re(¢p(z2))

and we know that the real part @f, is negative inDg. In view of (7.3) and (7.4) we then
obtain the formula foiQ,,

)

uniformly for z € 4, and from what we already know abofj, we get the first line in
formula (2.24).

We finally have to consider the case thgis onI"p (but not one of the branch points).
After opening up lenses arourddr we have the contouf p- to the left ofzg, and the
contour!” p+ to the right. We can take a neighborhodaf zg that is strictly contained in
the domain bounded bl p- andI p+. Then forz € 4 N Dy, p, We have

0n(2) = Qn(2)Y22(2) = Uz2(2)Qu(z)e™ " 187
andU(z) = T(z)V;_l(z). Now we havel22(z) = T22(z), since the second column &p-
is simply(O 1)T. We open the circleE1 andl"> aroundz; andz, so that4 is in the exterior.
ThenT = SN = (I + O (1/n®*tD/2))N, and so

0n(2) = Qu(z)e” "HDEr@ (sz(z) + N22(2)O (1/n(“+1)/2>
+ N12(2)O (1/n(“+1)/2)>

uniformly forz € 4 N D p. Using the estimate (7.2), the formula (6.16) Mx,, and the
relations (2.38), we then find the second formula in (2.24).
Forz € 4N Dy, we have
0n(2) =€ ™ Ey(2) — Pa(z)e” "
= Q2,(2)Y22(2) — e ¥21(2)
— Qn (Z)ef(l’H“l)gP(Z) U22(Z) _ 672nze(n+l)(gp(z)72l) U21(Z)
Now we have that
U@) =T@)Vp+(2),
with Vp+ given by 6.14). Then
0n(2) = Qu()e” DO Ty(2)
_ o212, (141 (gp ()-20) [T21(Z) + Ton(2) (2~ Lo 22t Dop Qg (Z))] ‘
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The factor multiplyingl»2(z) is exactly zero. This follows from (4.6). Thus only the second
term remains. This gives

0n(z) = —eHDEPE20 720 (2)
— — et D(gp()=20) ,~2nz ( Not(2) 4+ No1(z)O (1 /n<a+1)/2)

+ N11()O (1/’1(“1)/2)),

uniformly for z € 4N Dg. Using the uniform estimate (7.1), the expression¥er, and the
relations (2.38), we get the asymptotic formulafar 4N Dg. Note that, by (4.7), the limit
of the first formula in (2.24) on the +side 6% agree with the limit of the second formula
on the—side ofI'p. Hence, both asymptotic formulas in (2.24) extend't0\ {z1, z2}.

For E, we takezg € C\ I'g, and show that there is a neighborhodaf zg such that
(2.25) holds uniformly for; € 4. First we assume thap belongs to the inside regiabg.
Then forz € 4, we have by $.3) and (5.4)

En(2) = 2u(2)€" Y22(2) = Up2(2) 2 (2)e" e~ "HD80 @),
We can open the contour aroutith so that4 is in the exterior region to this contour.
Then we havel = T = SN = (I + O (1/n®*Y/2)) N, so thatUza(z) = Nao(z) +
N22(2)O (1/n*tD/2) 4+ N1p(z)O (1/n®+D/2) uniformly for z € 4. Using the estimate
(7.2), the formula fotv22(z) in (6.16), the relations (2.38) and (6.19), we obtain the second
formula in (2.25) forz € Dy.

If z0 € Do, p, then we can also open up the lens aroiiipdso that a neighborhoad of
zo IS not contained in this lens. Then we havefar 4, by (1.3)

Ey(2) = Py(2)e™"* 4 Qn(2)e"™ (7.5)
and we need to find out, what is the dominant contribution gsts large. We already have
asymptotic formulas foP, and Q,,, from which it follows that

1
- log |P,(z)e” ™| — Re(gp(z) — 2), (7.6)

1
- log |Qn(2)e"*| = Re(—gp(z) + 2 log(z) + 2). (7.7)

Now it turns out that foz € Dy p the termP,(z)e™"* dominates. Indeed, as before, we
have by (4.6)
Re(2gp(z) — 2z — 2 10g(z)) = —2 Re(@p(2))

and we know, by Lemma.9that the real part op » is negative inD, p. In view of (7.6)
and (7.7) we then obtain the formula fby,

Eq(2) = Py()e ™ (1+ O (%))

uniformly for z € 4, and from what we already know aboBt,
_qy+l n(gp(2)—2)
(=125, (1 p(2))e <1+0 ( 1 ))

sn(2y/ A2 + 1 n*

E,(z) =—
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uniformly forz € 4. Thisis thefirstline in formula (2.25). The prooffor the case Do, o
is similar. It uses the fact that the dominanttermin (7.5xfar Do ¢ iS O, (z)e"**. Actually,
itis simply an analytic continuation of the formula already obtained in the domgiihis
completes the proof of TheoretnlOwhenn € A.

Proof of Theorem 2.1.Since different schemes of points enter the proof, we will keep track
of these schemes by using a superscript. Hence, we introduce the n&gtigf , E2 and
Qf to specify that the interpolants are taken with respect to the scBefftee scheme-B
consists of the negatives of the point®BoiVe first need a preliminary result. We claim that
for all normalindices: € 4, large enough, we have d&f = . Indeed, the formula (2.23)
of Theorem2.10allows one to apply Rouché’s theorem on a cit€l®, R) containing the
curvel p, showing that, fon large, the difference between the number of poles and zeros
of PP outsideC (0, R) is equal to the same difference for the function given by the ratio in
the right-hand side of (2.23). This ratio has no zero outéid& R) but has a pole of order
n at infinity, sincegp(z) = logz + O (1/z) asz — oo. Hence, since deg? <n, the same
conclusion holds foP2, namelyP has no zero outsid€ (0, R) but has a pole of order
at infinity. In particular, fom large, P2 is of exact degrea. This proves the claim.

Now, we proceed by contradiction, assuming that the assertion of Thebfamfalse,
namely there exists an infinite sequencef indicesn with

degp? < nordegg? < n,

or equivalently
degP? < nordegQ? < n.

Assume that the pa'(rPnB (2), Qf(z)) is minimal among all solutions of the interpolation
problem of type(n, n), in the sense that the fractiat® / 08 is irreducible. We set

degP? =n—v, degQ® =n—y,

with v > 0 oru > 0. First, assume < v. By the previous claim, fon large, the case
@ = 0 is impossible. Moreover, the paiP? (z), 02 (z)) solves the rational interpolation
problem of type(n — p, n — p) associated to any subset?’—24 of 2n — 2u + 1 points of
B@_ Second, assume > v. Then, considering the schemeB instead of the schent,
and changing into —z in relation (1.3), the previous claim again shows, thatrfterge,
the casev = 0 is impossible. Moreover, the paﬂQf(—z), PnB(—z)) solves the rational
interpolation problem of typé: — v, n — v) associated to any subse®* 2" of 2n —2v+1
points of—B@"_ In both cases, the degrees- 1 or n — v are normal with respect to the
sets of pointg”?"=2 or C?*=2")_ Note also that the corresponding error functigh has
2n+1>2n—-2u+1(resp.2+1> 2n—2v+1) zeros in some given disR(0, ¢), ¢ > 0,
around the origin. For each indexe V , the setC(?*~21 or C(?'=2") according tqu< v or

u > v,isarow of anew schemé := C# [ =1, n €V .Note that, — oo asn — co.
Indeed, it is well known that an exponential polynomisiz)e* + P(z) has no more than
2degP + 2degQ + ¢ zeros in a given compact skt of C wherec is a constant which
depends only oI , see e.g[43]. By construction, each inddyk is normal with respect
to the schem&. Hence, the asymptotic formulas in Theor2rti0applies. In particular,
(2.25) implies that, fot large enoughElC (z) = EB(2) has exactly 2+ 1 zeros in the disk
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D(0, &), namely the zeros d®° (z). This contradicts the fact th@? has 2 + 1 > 2/ + 1
zeros inD(0, ¢), and the proof of Theorer.1is completed.

Completion of the proof of Theorem 2.10.We just proved that for any triangular scheme

B := B@) n = n,, of points lying in a given compact set©f all indicesn, large enough,

are normal with respectto rational interpolation to the exponential function. Hence, Theorem
2.10is actually valid for any sequence of indices N.

Proof of Corollary 2.11.1t is straightforward from the relation (1.3) and the fact that the
polynomial Q2 is monic that the following symmetry relation holds:

PB(—2)
(=1yofB”

0,80 =

Hencex? = (—=1)"P(0)/ 0, 2(0), and (2.27) follows from evaluating (2.23) and the first
equality in (2.24) at = 0. We also use with = 2 the fact that fon large,

2
s; B (2) = L <1+O <p—">>, zeC\ {0

s,f (2) n

Hence, in view of (2.1), we have that

_ 1 log? n _
B —
s, (2)_s,1,3(2) (1—}—(’)( ; )), ifo<a<1

and

7.2. Proofs of Theorens12,2.13, and Corollary2.14

Proof of Theorem 2.12.We will not give details of the proof since the asymptotic formulas
for 0, andE,, can be obtained as in Theorem 2.927]. The asymptotic formula foP,

is derived as in Theorem 2.10 {7] where we now use the fact that1/N21(z) and
N12/N22(z) are locally uniformly of orde® (n1~%/2) asn — oo, see (7.1) and (7.2).

Proof of Theorem 2.13.1f we unravel all the transformations fare 44, we find thatY (z)
is a product of matrices, the exact number of which depends on the regionzigaramely
=YX, F~Yan, r~Yuin,or f~1(1v), see Figh. Considering th€2, 1) entry of Y (z),
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we get after some calculations independent from the considered region, that by,

(—1)"P,(2)
= /et DEr@+ep@)

2
X [Z S2k(2) (Nkl(Z) + iz_le_zzsn(z)Nkz(z)) (n+ DY fr(x)M*
k=1

2
XA+ D2 f12) + Y S22 (~Nia@) + iz Es, (D Ni2(2))
k=1
x (1 -+ 7Y @) A+ VPR A1) | (7.8)
From the jump condition (6.1) fdd on I'p it easily follows that for eack,

(Nkl(Z) +iz e %, (Z)NkZ(Z))+

=i (Nkl(Z) +iz e %, (Z)Nkz(z))i, zeTlp.
The fourth root inf1(z)}/4is defined with a cut along », and onl"p there is a jump
(@Y =-i(A@YY) . zelp
+ p—

Thus the products
(M@ + iz s, @ Niz(@)) A

are analytic acrosE p. Similarly, we have that the products
(~Na@ + iz Es (IN@) A7

are analytic acrosEp.
Now we recall thatS(z) = I + O (1/a**1/2). Consequently, (7.8) can be rewritten in

41 as
(—1)" TP, (2) = Vme Ve @ er @) [1/6 ) AR ((n + 122 fu(2))
x ((Na(2) + iz 2e 25, (Na() (14 O (1/n*D12))
+ (Nn(z> +iz e %y, (z)N12<z>) 0 (1/n(°‘+l)/2))

+n Y8 1) VAA (0 + DR f1(2))
x ((_N21(Z) +iz e s, (2) N22(2)) (1 +0 (1/n(°‘+l)/2>)

n (—Nll(z) + iz_le_zzsn(z)le(z)) 10 (1/n(°‘+1)/2))]. (7.9)
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By use of (7.1) and (7.2), the previous expression reduces to
(—1"H1P (2) = Yre D e O 0r @) [ ) VAR (4 1P f1(2))

X(N21(2) + iz e %5, (2) N2a(2)) (l +0 ( 1 ))

ﬁ
+n7 Y8 1) TVAA (n + DR f1(2) (~N2a(2)
+iz e %5, (2) N22(2)) <1+ o ( - >>} :

n*
This proves the asymptotic formula féy, nearz1. The asymptotic formulas fap,, andE,
are obtained in the same way.

Before proving Corollar.14, the following lemma is needed.

Lemma 7.1. Letd,, > 0 be a sequence of real numbers such that= 0(1/|ngn) as
n — oo. The functiom1 (which depends on rjas no zeros ifz — z1| < 0, asn — oo.
Moreover,the functionsi1 andh; satisfy,asn — oo,

h2(z)/h1(z) = O (logn), if o<1, (7.10)
and
h2(z)/h1(z) = O (1), if a=1, (7.11)
uniformly in|z — z1| < J,. Similar property and estimates hold near the other branch point
22.

Proof. In view of the definitions of the functions; andz in Theorem2.13, along with
the expressions (6.16) of.AiVand No2, the quotientia(z)/ h1(z) is equal to the quotient of
the two following expressions

SAMp@)e 8D s()esr @ E2lo0: FuY/A
- 1
VW@ +1 S (— @)/ W52 +1
and ~
S (L)Y p(2))e8r@ ; sp(7)e8r(@)—2—2logz F (1)1
1 .
BRLOEE! Sn(— A () W5 (2) + 1

Now, sincef; is analytic with a simple zero at, f1(z)/(z — z1) is locally bounded near
z1. Factorizinge =47 ), making use of relations (4.5) and (4.6), and finally multiplying both

expressions with
B (Ao YW@ +1 [0 — 2, (7.12)

we may equivalently compare

_SAN @ A0 @) 4@ () +1 7.13)
sn(Z) 4po(Z) + 1
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Sp(2) 4po(Z) +1

First, for |z — z1| < J,, we show that the modulus of the expression (7.13) admit an
uniform lower bound independent bf Since (7.12) has no poles in a given neighborhood
of z1, it will in particular imply thatz1 has no zeros iy — z1| < 0.

From (6.25), where we have taken out the fackqis-2)s, (—2) on the left andvf(—Z)
on the right, we know that the first term in (7.13) can be written as

L p (D)5 (4 (2)) ( — )( <|ogzn>>
- =—85 | —— 1+0 . 7.15
@) KA Wir=) A G (7.13)

Letz —z1 = h, |h| < J,. Then,| — z/v/1+ 72> W for n large. Applying inequality
(6.21), we deduce that, as— oo,

and

—=< 1/2
5n <ﬁ) —1+0 (|h| / pn) =1+o0(1). (7.16)
uniformly in |z —z1| < d,, where in the last equality, we have used (2.1) and the assumption
thatd, = o(1/log?n). Since the second term in (7.13) tends-tb as ztends tozy, the
expression in (7.13) tends te2 and is thus bounded below, folarge.

Second, we show that the modulus of the expression (7.14) is dominated byifog
o < 1 orl(fa = 1), asn — oo. This will imply (7.10) and (7.11). Considering
expansions with respect td/2 of ¥ p, ¥, andgp nearzy, itis readily seen that

2
ie20r@ M =1+0 (Y%, h—0,
Mp(@) +1

while considering expansions with respect/tty? of 5, (1/y/ »(2)), Sn(=&(2)) and
sn(z) nearzy, it can be checked that
Su(L/Y p(2))5n (=B o (2))
5n(2)

wherethe lastO -term depends on n. In view of (15) and the first equality in (7.16), we
finally get that, as — oo, the expression (7.14) is of ordé¥ (logn) if o < 1 andO (1)
if « = 1, uniformly in|z — z1| < d,, which finishes the proof of the lemma.

=1+0 (h'%, h—0,

Proof of Corollary 2.14.The proof follows that of Corollary 2.12 ¢27]. The behavior of

the extreme zeros dt, nearz; is a consequence of the asymptotic formula (2.39). Indeed,

we consider the function
(—2)rtle=(rtD(gp () +0p ()

7nt/®hy(z)
Then F, has zeros,, = (zf, —z1)n?3,v = 1,2,..., and these zeros are ordered by
increasing absolute value. Becaus&/® = o(log=2n), n large, the asymptotic formula

2/3

F,(t) = P,(2), wherez = z1 +tn~
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(2.39) applies, showing that
Fo(t) = Al ((n + D23+ tn_2/3)> (1 e (n_lu»

_1zha(za+tn723) -
1/3 A’ 1y2/3 =213
e e A (0 DR+ )

(0 (1)) a1

Sincef1 is an analytic function with a simple zeroatand f] (z1) = c1 (see (2.35), (2.36)),
we get by expanding the functigfy nearzy, and making use of (7.10) and (7.11), that

Fu(1) = A (tcl +O (n—2/3>)

_1/3]’12(11 + ll’l_z/s)

mAi/ (tcl +0 (n_2/3>) +0 (n_];‘> . (7.18)

Expanding the Airy function Ai neaic1, and observing, thanks again to (7.10) and (7.11),
that the second term of the sum in the right-hand side of (7.18) is of ardéflogn if
0<a<1andn=13if o =1, we get

Fa(t) = Ai(ter) + O (n2/3ﬁ<n)) : (7.19)

+n

wherefi(n) has been defined in (2.42). Tle-term holds uniformly on compact subsets of

the complex-plane. From Hurwitz’ theorem it follows that for every fixed N, we have
. ly

lim #,, = ——.

n—o00 c1

Using the fact that-1, is a simple zero of the Airy function, we obtain from (7.19) that
1
tyn=——+0 (n2/3/3(n)) .
c1

This proves (2.43), sincel,, = z1 + ty,n~%/3.
The formulas (2.44) and (2.45) for the extreme zero@pfandE, nearz; are obtained
in a similar way from the asymptotics @f,, andE,, nearz1, as given in Theorergd.13.

7.3. Proofs of Theorents7and2.2

Proof of Theorem 2.7.The limits for the counting measureg, andvg, follow from the
strong asymptotic formulas (2.23) and (2.24), and the fact that, in view of (6.20), the family
of functions(s,), satisfies

1
— log s,(z) — 0O, n— 0,
n

locally uniformly inC \ {0}, in particular in a neighborhood &fp and!l’g. The proof using
the unicity theorem for logarithmic potentials (see ¢35, Theorem 11.2.1]) essentially
repeats the proof 489, Theorem 2.1].
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The proof for the limit of the measuresg;, is more difficult, since these measures have
unbounded support and infinite mass. It can be adapted with minor changes from the proof
of the similar statement about the measurgsin Theorem 2.5 0f27]. For the sake of
completeness, we notice a difference when estimating an upper bound for the myater
of roots of

n(@) = En(2)/82a(2) (7.20)
with absolute value<r, see inequality (7.11) of27]. We still start with the classical
inequality in the theory of entire functions,

N,(r) < log ‘gpg; [ fn(@)]| —log| fx(0)], (7.21)

see[28, Section 2.5]. The second line in (2.25) implies that

0= (110 (2 7.22

20 = —[1+ —1]. .

r0= 230 100 (3) =
Using E,(z) = P,(2)e ™ + Qn(2)e"* and the fact that the polynomial3, and Q,,, of
leading coefficients;z(Z)(l + O (1/n%)) (see Corollary2.11) and 1, respectively, have
their zeros in a compact set, independentlp ofie easily get that, (z)| < e2!%! for every

n € N and for everyjz| > R with R sufficiently large, sayR > Ro>1. Then, from (7.21),
(7.20) and (7.22) we see that there exists a constantO so thatV, (r) < Cnr if r > Ro.
The rest of the proof is similar to that of Theorem 2.92].

Proof of Theorem 2.2. Assertion (i) is a consequence of the strong asymptotics of the
scaled rational interpolants in Theoré0. In order to prove assertions (ii) and (iii), we
use (2.11) and (4.4), and get the following expansions-as0,

Yp(2) = —3 +0 @),

1
Vo2 = z + O (2),

2
gr(2) = (log(@ — 1) +z — % +0 5.

Making use of these expansions, the asymptotic formulas (2.23), (2.24) and (2.25), and
pluggingz/2n instead ofz, it is straightforward to check that (2.3) and (2.4) hold true.
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